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1. INTRODUCTION

A key aspect for parameter estimation of autoresgjvesmoving average (ARMA) processes is the
efficient evaluation of the likelihood function fdine parameters. In practice multivariate or vector
valued processes (VARMA) are important, as wetha@smore general case of missing values. Evalua-
tion of thegradientof the likelihood function is also important fds imaximization using traditional
numerical optimization.

This paper provides detailed practical formulae dalculating the value and the gradient of a
VARMA likelihood function, both for the complete @acase, and when there are missing values. A
companion algorithm paper [Jonasson 200 xxx] ptssklatlab programs that implement these for-
mulae, along with a demonstration on how to catyactual parameter estimation. Both the ability to
deal with missing values and to evaluate gradiaresbeyond the capabilities of previously published
programs. The technique used to treat missing satualso new.

We concentrate on thexactlikelihood function, not the conditional likelihdo(where the initial
shocks are assumed to be zero), both becausetireisanot easily applicable when values are miss-
ing or when the model has moving average termsatsulbecause the exact likelihood does in many
practical applications give significantly bettergmeter estimates. An alternative to using claksica
numerical optimization to maximize the likelihoagl to use the EM-algorithm, which may in some
situations be the method of choice in the presehogissing values. Application of the EM-algorithm
to VARMA time series is discussed in a new papeet@toglou and Smith 2007].

Three approaches to calculating exact likelihobdurdvariate ARMA processes have been de-
scribed in the literature: (A) one that we shalerao as theoresamplemethoddescribed by Siddiqui
[1958] for pure MA processes, (B) tiolesky decompositianethod first described by Phadke and
Kedem [1978], and (C) state space Kalman filtanethoddescribed by Harvey and Phillips [1979].
Several authors have described improvements aret@éemations of the originally proposed methods,



in particular, all three approaches have been géped to multivariate models and to univariate mod
els with missing values, and the Kalman filter noekihas been extended to the missing value multi-
variate case. An overview of the developmentsvsmiby Penzer and Shea [1997]. Among the papers
discussed there are [Ljung and Box 1979] describirepmputationally efficient multivariate imple-
mentation of the presample method, [Jones 198@neittg the Kalman filter approach to ARMA
with missing values, and [Ansley and Kohn 1983]adibing a Kalman filter method to evaluate
VARMA likelihood when values are missing. This lasethod has been publicized in several text
books. The Penzer and Shea paper itself dealsexi#nding the Cholesky decomposition method to
the univariate missing value case. In additionhe teferences in [Penzer and Shea 1997], Ljung
[1989] discusses estimation of missing values fovariate processes, Mauricio [2002] gives details
of a complete data multivariate implementationtef Cholesky decomposition method, and Mélard,
Roy and Saidi [2006] describe estimation of strreddlARMA models with complete data, allowing
unit roots.

Two Fortran programs for VARMA likelihood evaluaii in the complete data case have been pub-
lished: the Kalman filter method is implemented3#ea [1989], and the presample method by Mauri-
cio [1997]. In addition, pure VAR models (with colefe data) may be fitted using the Matlab pack-
age ARfit, described and published in the pair ayigys Neumaier and Schneider [2001] and Schnei-
der and Neumaier [2001].

The Cholesky decomposition method has some adyesité&or the complete data case it is consid-
erably simpler and more direct than the other tpjor@aches. Both Penzer and Shea [1997] and Mau-
ricio [2002] compare its efficiency with the Kalmélter method and find that it is faster in thepar-
tant case when there are more autoregressive teamamoving average terms (cf. Table 1 on p. 925
in Penzer and Shea’s paper and Table 1 on p. 48faimicio’s paper). As detailed by Penzer and
Shea, many authors have also pointed out thahfontissing value case the filtering approach may
suffer from numerical instabilities, and althougimedies have been suggested, they come at some
computational cost.

In this paper we take the Cholesky approach. T@weits history briefly, the original article of
Phadke and Kedem [1978] treats VMA models, extensto ARMA models is in [Ansley 1979],
Brockwell and Davis [1987, Ch. 11] describe a VARNM#plementation (they and some other authors
refer to the method as tlenovation methgdand Penzer and Shea [1997] provide a way of irandl
missing values in the ARMA case, albeit not the s@® our way. To our knowledge, the current pa-
per is the first one to give details of extendihg Cholesky decomposition method to the missing
value VARMA case, as well as being the first papgorovide derivative formulae. It could be argued
that it would have been more useful to give detaild an associated publicly available program for
the Kalman filter method. According to Ansley andhf [1983] missing values do not add to the
computational cost of the filtering method, buthwihe current method many missing values are
costly. However few missing values do not cost mgohjudging by the results quoted in the previous
paragraph our approach wins in that case.

The paper is organized as follows. Section 2 thices the basic notation and reviews the Cholesky
decomposition method for the complete data casetioBe3, the main section of the paper, describes
our approach to dealing with the missing value c8setion 4 describes the main ideas and techniques
used to compute the derivative of the likelihooddiion. Section 5 presents some numerical experi-
ments that complement the paper. The appendicegmiréechnical material. Appendix A describes
our approach to differentiation with respect to nmcat, Appendix B describes our solution to the
Yule-Walker equations, Appendix C describes howgémerate simulated time series, and, finally,
Appendix D provides the proof of a result usechia paper.



2. NOTATION AND THE CHOLESKY DECOMPOSITION METHOD

2.1 Model notation
A VARMA model describing a time series of values]RR" for integert is given by:

P
X ~H=D A X —m)+Y, (2.1)
j=1
where,
q
Y, =&+ Bg, (2.2)
j=1

p is the expected value &f, the A’s and theB,’s arer x r matrices, and thg'’s arer-variate N (0,Z)
uncorrelated in time. Lefl denote thg(p+q)r +r(r +3)/2-dimensional vector of all the parameters
(the elements of thé's, the B’s, = andp; 2 being symmetric). If there are no missing valuss,
servationsx, fort = 1,...,n are given, and denotes ther-vector(x/,...,x! )’ of all these values. When
there are missing values the observations areelifrtio a subvectox, OJR" of x, andx,, OR" is a
vector of the missing values, say, :(xml,...,x,TM . If the time series is stationary then the conglet
data log-likelihood function is given by

1(6) =—%(nrlog 277+ logdetS+ &-u § S* -7t ) (2.3)

whereS=cov, (x) andp=E,(X)=(u",...,n")". The log-likelihood function for the observed data
given by

1,(0)=~3(Nlog 277+ logdets, + &, ~H, ) S &,~H,) (2.4)

where S =cov, (X, ) is obtained fron® by removing rowsm,..., m, and columnsn,..., m,, andp,
= E, (X, ) is obtained fronp by removing components, ..., m, (see for example [Ljung 1989]).

We have included the mean of the series amongdhemeters, instead of assuming a zero-mean
process as is customary in the literature. Thisoisimportant when there are no missing values: one
can simply subtract the mean of the series. Wheretare missing values, this might however cause a
bias. Say a weather station was out of functiomdua cold spell. Then the mean of all observed tem
perature values would probably overestimate the tnean, but if other nearby stations were measur-
ing during the cold spell then maximizing the likelod of a VARMA model with the mean as a free
parameter would avoid this bias.

2.2 Likelihood evaluation for complete data

We now turn attention to the evaluation of (2.3}l @noceed in a similar vein as Mauricio [2002] and
Brockwell and Davis [1987] (and as briefly suggdste[Penzer and Shea 1997]). From (2.1),

Yi =X ‘H‘ijﬂAj (Xt—j _ll)

fort>p. Letw, =x, —p fort<pandw, =y, fort >p and letw = (w,,...w; )". Then w =A(x —p)
whereA is thenr x nr lower triangular block-band matrix given by

A=A A . (2.5)




Now letC, = cov(x, ,,_; ), G; =cov(y, X_; ), W, =cov(y, y,_; ) andS, = cov(x,,X,_; ), (all these are
x r matrices). Note that with this notation,

§ - g
% .

S_T'
%%

Furthermore, letA and B, be zero fori andj outside the ranges implied by (2.1). By multiplyin
through (2.1) from the rlght with” ; forj =0,...,q and taking expectations the following recurrence

formulae forC,, C, C,,... are obtamed:
C,=AC. +..+ AG+ BZ, forj =

S
S= Sl (2.6)
Sn

0,1,.. 2.7)

(soC, =%). With B, =1, we have by (2.1) and (2.2):
G, =BG +...+ B, forj=0,..,q,

W, =BZB +..+ BZ§ ,, forj=0,...,q.

Forj <0 orj>q, C, G, andW, are zero. By multiplying (2.1) from the right wi(R,_; —-p)" forj
,p and taking expectations one gets the followingdinsystem (th&ector-Yule-Walkeequa-

tions) for ther(r +1)/2+pr? elements of,..., S, (note that§, is symmetric):
S-AS--A%= 6
S-AS-A$-..- ABIS
S-AS- AS AD .- ASS

(2.8)

(2.9)

(2.10)

5" A% AT A
The solution of (2.10) is dealt with in Appendix B.q < p, the covariance matrix a¥ will be given

by thenr x nr matrix:

'S 9§ % |
S 8 <t
.Sf D
Sps 5 5|6 - ¢
o= G G W W W (2.11)
DWW W
G, | i W W N
W, W
WowW W
| V\/q W W_
If g > p the depiction is slightly different, ther x (n —p)r upper right partition of2 will be
G, - G ,
G G e q



the lower left partition will be the transpose bfst but the upper left and lower right partiticare
unaltered. Sincé has unit diagonal, one finds that

1(6) =-%(nrlog 277+ log e +w'Q 'w) (2.12)

To evaluate (2.12) it is most economical to calieutae Cholesky-factorizatioR = LL" exploiting the
block-band structure and subsequently determirel'w using forward substitution. Then the log-
likelihood function will be given by

1(8)=-%(nrlog 27+ 25, lod; +2'z.. (2.13)

We remark that the exposition in [Brockwell and 3a¥987] is significantly different from ours.
They talk of theinnovationalgorithm but it turns out that the actual caltiolas are identical to the
Cholesky decomposition described here.

2.3 Operation count for complete data

Let h = max(p,q. and assume tha > 0 (see Section 3.4 for thp= 0 case). Givex it takes
r’p(n- p) multiplications to calculatev. Determining theC,’s for j < g, G;'s andW's with (2.7),
(2.8) and (2.9) costs aboui(min(p,q)?/2+ g?) multiplications and solving the system (2.10) take
roughly r®p®/3 multiplications. The cost of the Cholesky-factation of Q will be about(rh)3/6
multiplications for the upper left partition and(n — h)(q2/2+ 7/ 6) for the lower partition. Finally, the
multiplication count for the forward substitutionriz is aboutr?(h?/2+ (p/ 2+ g)(n- h)).

To take an example of the savings obtained bygu$ih13) rather than (2.3) Ipt=q = 3,r = 8 and
n = 1000. Then Cholesky-factorization 8fwill cost 800(?/( =8.5[10° multiplications (and take
about 7 min. on a 1600 MHz Pentium M processor)caitulation with (2.13), including all the steps
leading to it, will take4.0C1G multiplications (and take 0.02 s).

3. MISSING VALUE CASE

3.1 Likelihood evaluation via the Sherman-Morrison-Woodbury formula

We now consider the economical evaluation of (lh4he presence of some missing observations. As
is customary, we assume that observations “ara@ngiss random”, i.e. that whether an observation is
missing does not depend on its numerical value.

Consider first the ternix, —ui,)" S;*(x,— ). Let Q, A and S be obtained fronQ, A andS by
placing rows and columnsy,....,m, after the other rows and columns and partitiomtlaes follows
(with Q_, A, and§ beingN x N, andQ _, A, andS, beingM x M):

0O — Qo Qom N — /\o /\om Q — So Som
Q_|:Qmo Qm:l,/\_|:/\mo /\m:l’ a.nds_|:smo Sm}

By the definition ofw, Q = ASAT and therefore

QO = /\OSO/\IJ + /\ OSOH(\TOm-I- /\ omsmé\-ro-l- /\ Om%.r (& (31)

N\, is obtained from\ by removing rows and corresponding columns, amsltiierefore an invertible
lower band matrix with unit diagonal and bandwidtimostrp, andQ_ is obtained fronf2 by remov-
ing rows and corresponding columns, so it is albarad matrix and its triangular factorization viaé
economical. It is thus attractive to operate whtbse matrices rather than the full magjx Defining

Q, = NS (3-2)
andw, = A (x, - ) we have(x, —ii,)" S;* (X, — 1t ) =W QW . Also, from (3.1) and (3.2)

g'.’20 = QO - /\ OSOTT‘/\-ll—)m_ /\ omsTorA\To_ /\ omSI41\T o’ (33)



(keep in mind thaB is symmetric). The matrices,, A, andSA,, areNx M, so if the number of
missing valuesM, is (considerably) smaller than the number of olz®ns,N, then (3.3) represents
a low rank modification of2 . This invites the use of the Sherman-Morrison-Wnog (SMW) for-
mula [Sherman and Morrison 1950; Woodbury 1950;@dlub and Van Loan 1983]. To retain sym-
metry of the matrices that need to be factoriz8@®)(may be rewritten as:

Q,=Q,+USU"-VS'V (3.4)

whereU = A S andV =A_ S, +A\,,S. It turns out that) is generally a full matrix bW is sparse,
and it will transpire that it is possible to avémtming U.

To obtainV economically, select the observed rows and missolgmns fromAS. From (2.5),
(2.6) and proceeding as when deriving (2.10) thlewang block representation @gtSfor the case >

p is obtained:

I So Sr ’ S.—l |
Sp—l % $ : $—p
/\S: G.p Gl G0 .G—:L (S—n.-i-p+l
G, :
. G,
i G, G
Forq < p the upper partition is the same but the lowerifpantis:
G, = G, G—.n+p+1
G, G

For S, Sy Multiply (2.1) from the right with(x,_; —-n)" forj = p+1,..., n—-1and take expecta-
tions (as when deriving (2.10)), giving

S;=ASatT ARot.t ASF (3.5)
with G, = 0 forp > g. TheG, for negativg may be obtained using:
G,=C +BG,+..+ B G,

where theC'’s are given by the recurrence (2.7).

From (2.10) and (3.5) it follows that blocksj) withi > ] + g of ASare zero, giving almost 50%
sparsity. If the missing values are concentrateat tiee beginning of the observation period then
will be sparser still. This applies, for exampldem the series represent measurements that dadlnot
start at the same time, as will often be the cagwactice. To take an examplegiE 1,r =2,n=6
andm = (2, 3, 4, 5, 9) then the sparsity patterivafill be:

X X X
X X

X X X

X XXX XXX

The SMW formula applied to (3.4) gives



Q=0 +QVQ VA
where
Q,=Q,+USs U’ (3.6)

andQ is theM x M matrix S, - V'Q;1V. Moreover, ifR is theM x M matrix S, + U'Q;*U then
(again by the SMW formula):

Ql=01-QURUTQ;.

If L, is the Cholesky factor & andK = LoU 'Q_V it follows thatQ = S, - V'Q.'V+ K' K. The first
method that springs to mind to evalu‘a(t&) Y eff|C|entIy is to Cholesky factorle =LL", use for-
ward substitution to obtad = L™V and formVTV However, with this proceduNé will be full and
the computation of 'V will cost NM (M +1)/2 multiplications. In contrast, if an"L-factorization of
Q_ is employed instead of arl'-factorization the sparsity &f will be carried over to/ with large
potential savings. This is a crucial observatiocdase, with many missing values, multiplicationhwit
V constitutes the bulk of the computation neededHedikelihood evaluation.

_ Thus the proposed method istL-factorize Q, =L{L, and back-substitute to g¥t= L'V and
Ao =LA, making use of known sparsity for all calculatidtiee sparsity structure aﬁ . Will be
similar to that ofV). With R, =VTV, R, = AT A__andP = AT V (again exploiting sparS|ty) we find
thatR=S +R+ S RS- S P TP » (all matrices in this |dent|ty are full x M), K = L (R, = P)
and Q = S, - R + KT K. Let further LQr be the Cholesky factor of), W,=L W, u =

LEV™W, - S, AT W ) andv = Lo LV W, — KTu). A little calculation then gives:
(X ~Ho) Sg (X~ =W o—uTu+v'v.

Now turn attention to the other nontrivial term(Eh4) logdetS,. Fromdet( + AB) = det( +BA]
(see Appendix D) we gatet(X + AY ™ A = detX dety™ detK+ A Yl A. From (3.3), (3 6) and the
definition of Ly, detQ, = det@Q v% LV = detQ, deS;! det§, - VQ.'V = detQ, detS;" det(, .
Similarly, detQ, = det(Q +US'U") = detQ, deiS‘l det§, + U'Q' U = detQ deiS det(, 2.
Since det\ = 1 it now follows from (3 2) and the deflnltlom b, that

logdetS, = 2(logdet, + logdet; + logddt, - logd& .

3.2 Estimating missing values and shocks

An obvious estimate of the vector of missing valiseiss expected value<,f1 =E(x,, |X,.0), whered
is the maximum likelihood estimate of the parangt#ris is also the maximum likelihood estimate of
X.,). SinceS,, = cov(x,, X,)andS, = var(x,),

XIEI: mogl(xo_ﬁo)-'-ﬁn'

(Whereum consists of missing componentsiof Similarly, the maximum likelihood estimate okth
shocksg, is given bye’ —E(s |x ). For 0<j <q, COV(g, X,,; )= CT ande, is mdependent oxm for
otherj. It follows thate® CSO (X, —R,) whereeF is the column vector witls",....e; andC is ob-
tained by removing missing columns from tirex nr matrix:

c, ¢ - G
C, -
. T
C
G, C
L Co




With some calculation one may verify that given thatrices and vectors defined in the previous sec-
tion, the estimates of | ande may be calculated economically using:

XrEn = SmVZ +l—1rr'
and
g5 =CATLT (W, +V(v,-Vv,)-A_SV)

wherev, = L'V andv, = L' (u+Kv,).

3.3 Simplification for pure autoregressive models

If qis zero and there are no moving average termsdemable simplification results, and it is worth-
while to review this case. Singg =¢, for all t the G, andW, matrices will all be zero apart frofg,
andW,, which are both equal t6. The upper lefGpartition of Q in (2.11) will be unchanged, tite-
partition will be zero and the lower-righi{-partition will be a block diagonal matrix where bdsock

is equal toX. For the missing value ca$®, needs to be Cholesky factorized. It is obtaineddoyov-
ing rows and corresponding columns fr@mso that its upper left partition is the samerathe gen-
eral ARMA case, but the lower right partition iblack diagonal matrix:

whereZ ; contains rows and columns bfcorresponding to the observed indices at fimei. To ob-
tain L, it is therefore sufficient to Cholesky factorizg for each missing pattern that occurs, which in
all realistic cases will be much cheaper than Glgldactorizing the entir@ -matrix.

3.4 Operation count for missing value likelihood

Finding theC/'s, G,’s andW's and S's will be identical to the complete data case. Thelesky fac-
torization ofQ_ costs at mostzN(q2/2+ 7/ 6 multiplications (unless the upper left partitienunusu-
ally big). FormingAS costs about®(2p +q)(n— p) multiplications. The cost of forming_, andV
using back substitution depends on the missingevphttern. In the worst case, when all the missing
values are at the end of the observation periodctst is approximatelygNM multiplications for
each, since the bandwidth of botlcisg, but as explained in Section 3.1 the missing &l often
be concentrated near the beginning and the coksbinuch smaller. The cost &, R, andP also
depends on the missing value pattern. In the waarse the symmetriR, and R, costNM2/2 multi-
plications each an® costsNM?, but the typical cost is again much smaller (fearaple, with the
“miss-25” pattern of Table | the cost is 5 timesadier). Next follows a series of ordst® operations:
S,P costsM?, R costs3M %/2, K andQ costM ®/2 multiplications each. Finally the Cholesky factori
zations for each ok, L, anddetS, costM */6 multiplications. The multiplication count of otheal-
culations is negligible by comparison unl@é4ss very small. Whem andM are large compared o

g andr the governing tasks will cofNM? + 4M? multiplications wherd is the savings factor of
having the missing values early on.

In the pure autoregressive case s, G,'s andW's come for free, but solving the vector-Yule-
Walker equations costs the same as before. Theot@tolesky factorizing2 will usually be negli-
gible, and much cheaper than wher 0. When nothing is missing, it is the numipeN of multipli-
cations to findw and the numberpN /2 of multiplications of the forward substitution farthat gov-
ern the computational cost. On the negative shiEetwill be no savings in the governing tasks when
M andn are large.



4. DERIVATIVE OF THE LIKELIHOOD FUNCTION

Several different matrix operations that need tdifferentiated may be identified. Matrix products
are used in the calculation @f and the covariance matric€s, G andW, Cholesky factorization
gives Q, linear equations are solved to obtain 8wnatrices and, and lastly one must differentiate
log detL. In the missing value case, several more matrodyets, Cholesky factorizations, linear
equation solutions and determinants occur.

Nel [1980] reviews and develops matrix differetitia methods of scalar and matrix-valued func-
tions with respect to scalars and matrices. Heudses three basic methods, and concludes that a
method that he calls thlement breakdowmethod is best for general purposes, and thisesap-
proach we take. For the change of variables destiiip Section 4.3 we also make use ofvg@stor
rearrangementnethod.

Since there is no commonly used notation for déffidiation with respect to matrices, we provide
the needed notation and formulae in Appendix Actarity and ease of reference.

4.1 Derivatives of the r x r covariance matrices

The matriceC,, G andW are all simple matrix-polynomials in the parametetrices (theA's,
B’s and%), and it is not difficult to verify that they call be obtained by applying a sequence of op-
erations of the following types:

F « F+XY
F o F+XY
F - F+XG
F  F+XG'

(4.1)

whereF is the polynomialX andY are independent variables (parameter matrices) Gais also a
polynomial obtained through such steps. Initial@atcan be eitheF —~ O (ther xr zero matrix) or

F — X (one of the parameter matrices). The operatioriy ¢an all be differentiated using (A.3) and
(A.4) as detailed in the following table, whetgY andZ are different parameter matrices:

Corresponding change to:

Change to F: [dF/dZ),, [dF/dX],, [dF/dY],,
+XY 0 +g Y +Xe €
+XYT 0 +e Y’ +Xe d
+XG +X[dG/dZ,, +X[dG/dX,.+e€ C
+XG' +X[dG dZ), +X'[dG dX.+eq G

For the first few applications of (4.1) the derivas will be sparse, and for smallq and/orn it may
be worthwhile to exploit this sparsity. There angdssible sparsity patterns foF/dX:

1) all elements are zero

2) inthe(i,j)-block only the(i, j )-element is nonzero

3) only thei-th row in the(i, j)-block is nonzero

4) only thej-th column in the(i, j )-block is nonzero

5) the matrix is full
As an example, lgh = 1,9 = 2 and consider the differentiation Gf, C,, andC,. These matrices are
given byC, = %, C, = AZ + BZ (the first operation of (4.1) twice) ar@, = AC + BX (the third op-
eration of (4.1) followed by the first operatiofixeatingZ as non-symmetric to begin with, one ob-
tains:



dC,/dA=0  [dG/ dAl.=e€Z [ dG/ dA.= P dE dA+ed ¢
dC,/dB=0  [dG/ dB].=e€Z [ G/ dB.= R d¢ dB.+eq ¢
dC,/dB =0 dG/ dg=0 [dG/ df.=gd>
[dC,/d2] =€ [dG/ ] =( A+ Be¢ [ dG/ & ,.= [A d¢ X +Be€
Here all the sparsity patterns are representedrandnly full matrices are the derivatives©f with
respect toA andB,. Finally, the derivatives with respect to the syetinc > are adjusted using (A.7).

Now we turn attention to the vector-Yule-Walkeruations (2.10). Differentiating through these
with respect to a parameter gives:

S ~(ASue -t AG)-( AL D)+t A,:5))
:G|'c+(A1',|c§-1+---+ A %)+( Ay S+..+ ,’Agsj)for 50.,...,

This set of equations has exactly the same coeffichatrix as the original equations (2.10), bdifa
ferent right hand side which can be obtained usieformula ford( XA)/ dX in (A.4) (sparsity can be
exploited). It can therefore be solved to obtaia derivatives of5,, ..., § using the same factorization
as was used to obtain tie

(4.2)

4.2 Remaining steps in likelihood gradient calculation

It follows from (4.1) that the derivative ¢f (and therebyw,) with respect théB’s andZ is zero,
and (A.5) gives its derivative with respect to thés andp. For complete data, the next needed de-
rivative is that ofL, the Cholesky factor aR. As the derivative of all the submatrices®have been
found, this may be obtained using (A.10) and (A.Making necessary modifications to take advan-
tage of the block-band structure @f To finish the calculation of the gradientl() in (2.13), usd.z
= w together with (A.8) to differentiate, followed by (A.6) to differentiate’z, and finally use
d(logl; )/dX = (@/1;)dl; /dX.

In the missing value case, the operations that imiglifferentiated are the same: matrix products,
Cholesky factorization, forward substitution, aretedminants of lower triangular matrices, and there
is no need to give details of all of them. Theydaeen implemented in [Jonasson 200 xxx] by writ-
ing functions that implement (A.3), (A.9), (A.1Md(A.11).

4.3 Operation count for gradient calculation and possible savings

Inspection of the formulae in Appendix A for theriglatives of the most costly operations, namely
matrix products, Cholesky factorization and forwanbstitution, shows that they all cost approxi-
mately 2n, times more multiplications than the original ofienas being differentiated, wheng, =
r’(p+q)+r(r+1)/2 is the total number of model parameters excluginghich does not enter the
costly operations. The gradient calculation wikkrgfore usually dominate the total work needed for
likelihood maximization and this is confirmed byethumerical results of Section 5.

One way of trying to reduce this work would beus® numerical gradients in the beginning itera-
tions, when the accuracy of the gradients is natrgrtant as closer to the solution. Using forward
differencing,(8/06,)1(6) = (1(6+Je,)~1(8))/d, the gradient can be approximated wighfunction
calls, giving a potential saving of factor 2. Howevjudging by the results shown in Table Il in the
next section, it seems that this technique is aatseful.

Another possibility of speeding the computatiomssts when estimating seasonal models, struc-
tured models, or various models with constraintstran parameters such as distributed lag models.
Without entering too much into detail, such modabsy often be described by writijas a function
of a reduced set of parametefs; g(¢), WheregoDRn“’ has (often much) fewer components than
The log-likelihood for a given set of parametegsis 1(g(¢)), and the corresponding gradient is
I'(9(9) I, (9, whereJ, is then, x n, Jacobian of the transformatignThe parameter matrices may be
sparse and it would be possible to exploit thesparbut big savings are also possible by multigy
with the Jacobian earlier in the computation of gnadient, instead of after evaluatiH¢f). A con-
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venient place to make the change of variablestés #fe differentiation ofv, theC/'s, G,’s andW,’s,
and theg,’s in the right-hand-side of (B.3). The costly datives come after this, so the potential sav-
ing approaches a factor ug/nw. In [Jonasson 200 xxx] this course of action hesnbimplemented,
and the likelihood routines havg as an optional parameter.

5. NUMERICAL EXPERIMENTS

The methods described in Sections 2-4 have bedeiimgmted in Matlab as described in the compan-
ion paper [Jonasson 200 xxx]. The Matlab package iicludes a function to simulate time series as
described in Appendix C below, and a program detnatiisg likelihood maximization. In this section
we report on some experiments carried out withphiskage.

5.1 Likelihood maximization

The primary use of likelihood evaluation is to sstte model parameters by maximizing the likeli-
hood function. The companion paper contains a dstraiion program of such parameter estimation.
Among the models demonstrated are VAR(2) with3,n = 400 and complete data, VAR(2) withr

3, n =200 and 5% missing values (missing pattern “f@sfrom Table 1), and two VARMA(1, 1)
with r = 2,n = 200, one with complete data and the other withrBissing. Choosing thecminfopti-
mization routine (see the companion paper), thamater estimates for these models were obtained
using 34, 37, 31 and 47 function-gradient evaluesticespectively. Using Matlab 7.1 with its default
Intel Math Kernel Library (MKL) on an 1830 MHz L2B60Core Duo processor (Lenovo X60s com-
puter) the total execution time for this modellwgs 62 seconds. THminuncoptimizer takes about
60-70% longer. The demonstration program also astismtwo VAR models with constraints on the
parameters, of the type discussed near the enéatio8 4.3. The modelling involves real meteoro-
logical data withp = 2 and 3y = 3,n = 146 and 6.6% of the values missing. Detaildefrnodels and
data are in the companion paper Jonasson [200anc&}the data is further described by Hanna, Jons-
son and Box [2004]. The estimation of these two e®thkes 39 and 41 function and gradient evalua-
tions in 8 and 11 seconds respectively.

More complicated models require more iterationd kmger execution time. To take some exam-
ples, a VARMAC(L, 1) fit withr = 4 andn = 400 took 97 function and gradient evaluationd @0
minutes of execution time and the two meteoroldgiwadels withn = 208 took 54 and 55 function
and gradient evaluations 2:36 and 3:09 minutesef&ion time.

5.2 Timing of function evaluations

The simulation function has been used to geneestedata with several models, missing value pat-
terns and dimensions, and these data have beertausest and time the likelihood evaluation func-
tions. The tests were run on a 1600 MHz Pentiunrdégssor (about 3 times slower than the one used
for Section 5.1). Table | shows the run time inos&ts required for one function evaluation for each
combination of model, missing value pattern, andatisions.

For the pure VAR models the simplifications of &at 3.3 are realized, and for complete data the
solution to the vector-Yule-Walker equations ang ¢alculation ofv andz will govern the computa-
tion. For VMA and VARMA models these calculatiorigl snake up a portion of the total, but the fac-
torization of Q is now more expensive and accounts for most oflifierence between the complete
data execution times of the VAR(1) and VMA(1) madshown in Table |I.
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Table I. Run time in seconds per one function eatédn. The missing value patterns

shown in the “data” column are a) complete datanigs-5a: 5% missing scattered

in first quarter of each series; c) miss-5b: 5%sinig scattered throughout entire se-
ries; d) miss-25: 25% missing — half the seriesehidne first half missing.

Dimensionr =2 | Dimensionr = 4 | Dimensionr = 8

Model Data |n=100 n=500|n=100 n=500{n= 100 n= 500
VAR(1) completeg 0.01 0.02 0.01 0.03 0.01 0.03
miss-5a 0.02 0.1d 0.03 0.24 0.05 0.85
miss-5b 0.03 0.24 0.04 0.5 0.10 2.21
miss-25 0.04 0.73 0.08 4.0 0.35 28.07
VMA(1) complete| 0.04 0.19 0.04 0.21 0.05 0.24

~

miss-5a 0.06 0.29 0.06 0.47 0.09 1.07
miss-5b 0.07 0.43 0.08 0.86 0.15 2.8
miss-25 0.08 1.00 0.12 4.41 0.39 2834

VAR@3) |complet§ 001  0.03| 001 003 004 006
miss-5a| 0.03  0.11 004 024 008 0.88
miss-5b| 0.03 019 005 055 012 2.9
miss-25| 0.04 073 009 409 037 27.0
VARMA(2,2) |completel 0.05  0.25| 0.06 0.27 008 0.34
miss-5a| 007 033 008 051 013 1.p4
miss-5b| 0.08 057 010 102 019 2.98
miss-25| 0.09 102 0.4 447 044 28p4

© O

Missing values add gradually to the cost, and where are few missing values the execution time
is only marginally greater than for complete dAthen more values are missing the savings in the
VAR model are gradually eradicated. Now the apprnately orderM ® operations (independent pf
andq) involving the profile-spars& x M matricesvV andA_,,, and the fullM xM matricesS,, R,,

R,, P, Q, R andK become more and more important. If these werefiy computations one would
expect a factor 125 difference between 100 anch = 500, but because of other calculations that do
not depend orM the largest factor in the table is 80 (for VAR(hiss-25r = 8).

Another feature shown by the table is the diffeeebetween miss-5a and miss-5b, corroborating
the discussion between equations (3.5) and (3.6gtion 3.1. This ranges from a factor of 1.2 to
factor of 2.61, the average being 1.89.

5.3 Timing of gradient evaluations

Timing experiments for gradient evaluation wereatarried out. It seems most relevant to compare
with the cost of numerical differentiation. Thenefdrable 11 shows the factor between the time @& on
gradient evaluation anoh function evaluations. Where a table entry is liss1 one, the analytical
gradients take less time than (maybe inaccurate)aiwl-difference numerical gradients, and where it
is less than two the analytical gradients are chetipan central-difference numerical gradients. The
average of the 70 factors shown in the table i4.0The table is less extensive than Table | because
the computer used did not have enough memory te tiva largest models. The memory was suffi-
cient to time some runs not shown in the table, thedresults were comparable to the figures shown
(the average factor for 11 cases not shown inabie twas 0.41).
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Table II. Execution time for one gradient evaluativided by time for
m function evaluations whera is the number of model parameters. See
caption of Table | for explanation of the “Data’lwamn.

Dimensionr =2 | Dimensiom =4 | r=8
Model Data |n=100 n=500{n=100 n=500{n=100
VAR(1) complete| 0.40 0.47 0.15 0.17 0.09

miss-5a 0.56 0.78 0.35 0.97 0.66
miss-5b 0.58 0.64 0.50 1.0p 0.77
miss-25 0.83 2.04 1.33 2.22 211

VMA(1) complete| 1.16 1.57 1.06 1.0§ 1.12

miss-5a 0.63 0.68 0.33 0.66 0.52
miss-5b 0.67 0.76 0.42 0.74 0.65
miss-25 0.71 1.39 1.02 2.01 1.92

VAR(3) complete| 0.23 0.26 0.10 0.11 0.05
miss-5a 0.35 0.62 0.30 1.0
miss-5b 0.38 0.82 0.42 1.0
VARMA(2,2) | complete| 1.10 1.19 1.07 1.17 1.08
miss-5a 0.34 0.45 0.27 0.66 0.55
miss-5b 0.36 0.51 0.38 075 0.74

o1 ©
o o

I ¢
N O

The relative cost of gradient evaluation is someavitnaer than expected at the outset, as the deriva-
tive of many basic linear algebra operations wlih formulae of Appendix A costi2times more than
the operations themselves. This could be becaesevidluation of the gradient involves larger matri-
ces, thus making better use of the Intel MKL. Theable power of the MKL explains partly the vari-
ability of the numbers in Table II, but the resttbé disparity probably occurs because different de
rivative routines make unlike use of the power clthdb.

APPENDICES

A. DIFFERENTIATION WITH RESPECT TO MATRICES

Many of the identities that follow may be foundiel 1980]; see also [Golub and Van Loan 1983]. If
f is differentiable function on the set bf x N matricesf: R™N _ R, then theN x M matrix with
(i,j)-eIement@f/d)gj will be denoted byf'(X) or df /dX. If f is a vector valued function of a matrix,
f: R™™N _, R™thendf/dX orf'(X) denotes the block matrix:

of/ox, - 0f/axy

0f/0xy, -+ Of /Oxun
where each block is am-dimensional column vector (theth block row is actually the Jacobian ma-
trix of f with respect to thé-th row of X). If F is matrix valuedfF: R™N —, R™", thendF/dX or
F'(X) denotes th/ x N block-matrix

OF /0%, -+ OF/0xy

OF /0%y, -+ OF/0%yy

(A1)

The (1,c)-block of (A.1) will be denoted by, or [dF/dX]IC and it is anm x n matrix with (i, j)-
element equal tof, (X)/axc. It is now easy to verify, that @ is a scalar andr is another matrix
function with same dimensions &s thend(aF + F)/dX= adf dx+ di d.. We also have (where
g is thel-th unit vector):
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[dX/dX]_=e€, (A.2)
and, ifG is another matrix functio®: R™N _ R™¥ then

[d(FG)/dX] = FG+ R C (A.3)

A.1 Differentiation of matrix products
The following special cases are all consequencéa.dj and (A.3):

[dX"/dX],. =e.d
[d(AX)/dX. = A€ [d X} dK.=¢¢ A
[d(AF)/dX],. = AR [ Fy dX.= E A
[d(XF)/dX],,= XE +ed F [d F¥/ dX.= > Re¢

where, in each casA,is a constant matrix with dimensions compatiblthwhose o andX. WhenA
is actually a vectorh = a, we have:

(A.4)

e
d(Xa)/dX:[ : ]aT, (A.5)

€wm

and similarly,d@" X)/ dX=alg --- €]. If n=1 andF is vector-valuedF =f =[f,,..., f_]", thel-
th block-row ofd(Xf)/ dX is X[3f/dx, ... of /dx,]+efT and thec-th block-column ofd (f 'X)/dX
is[0f /o, ... of JOx,] " X +fe . Furthermore:

[d(fF)/dX],, =2f (oF /9 x,) (A.6)

A.2 Derivative with respect to a symmetric matrix

WhenX is square and symmetric and its upper triangldichtps its lower triangle, the correct deriva-
tives are obtained by using the fXlin (A.4), and assigning in the final result:

(I,c)-block ~ (I,c)-block + (c,1)-block (for alll, c with | > ¢) (A.7)

(only the lower block-triangle is relevant). To ¢a&n example let = 2, x,, = X, and consider the cal-
culation ofdX?/dx,. By (A.2) and (A.4),

dX?/dx, = Xe,€ + g X { X_lf )?j anddx?/dx, = Xe & + g X = [Xél X+ Xzz:l.
2

Xoo T X1y X51

Adding these matrices and lettirglenote the duplicated element{r{i.e.x = X, = X,) gives the ma-
trix:

2 X1t %,
X+ X o 2X

which is easily verified to be the derivative ¥f with respect to. It would be possible to make the
calculation of derivatives with respect to symnetriatrices more efficient by developing appropriate
formulae analogous to (A.4), but the complicatiermuld probably be significant and the pay-back
marginal in the present setting.

A.3 Derivative of the solution to linear equations

If the vectory is given byAy = b then it follows from (A.3) thatA(dy/dx.) + A.y =0b/dx%, and
dy/x.is therefore given by solving the set of linear &tpns:
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A@Qy/0x,) =0b/ax, — Ay. (A.8)

We note that the factorization &fused to obtaily can be reused to obtain its derivative. Similaifly,
the matrixF is given byAF = B thenF,_ may be obtained by solving:

AR =B, - A F. (A.9)

A.4 Derivative of Cholesky factorization

If S= LL is the Cholesky factorization of a symmetric mat8 it follows from (A.3) that
S.=WL)"+ L L. If S, LandLj, are partitioned as follows for a givén

s L 5
S.=|s"T g LL=[u" I, andL, ={u'" I},
S t § L v L, L V' L
then2(u'u’ +1,J},) =s), andLu'+ Llu=s so that
Lu'=s-Lu (A.10)
and
o = (S'kk/z_uTu')/l ki (A.11)

These relations may be used iterativelyKor 1, 2, ... to calculaté,, line by line, withu' obtained
from (A.10) with forward substitution.

B. SOLUTION OF THE VECTOR YULE-WALKER EQUATIONS

In this appendix, we consider the solution to th&tem of equations (2.10). Our approach closely re-
sembles that given by [Mauricio 1997, eq. (6)] amgbarticular the system we solve is of the same
order, namelyr®p —r(r —1)/2. However, Mauricio does not provide a derivatidrthe system, our
notation is significantly different from his, andstly the system solved is not exactly the same (al
though it is equivalent). Therefore, we providesaplicit derivation in this appendix.

IsolatingS, in the last equation of (2.10) and substituting ie first equation gives

S-(AS+.+ A, 5)-(ASH ASWA+H.+ ASDE & A (B

It is convenient to make use of the Kronecker pobdA O B is a block matrix with(i, j )-block equal

to a; B), the notation veé for the vector consisting of all the columns ahatrix A placed one after
another, and vech for the columns of the lower triangle Afplaced one after another. A useful prop-
erty here isvec(ASB ) = (B0 A)vecS. Let s =vecS, g =vecG, and denote thk-th column of A
with a, and thek-th unit vector withe,. Becauses, is symmetric, taking the transpose of (B.1) gives
with this notation:

(I =-A0A) s~ (AOI+ADA )s—...= (A0 I+ Al A) s = vec G, + (A0 Ng, (B.2)
Furthermore, the equations with right hand sgle..,G, , in (2.10) may be written as
s-A%-As— . -AS.= g
S ~AS-ASAS . m A §-zf 9 (B.3)

~ A~

sp—l_pﬁ_sp—Z_"'_ Ap—l%_ A3§-= g)‘]

whereA =10A andA is also anr? xr ? sparse block-matrix (which cannot be represensatl):
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A=la 34|

a, g - 3¢

Together (B.2) and (B.3) providpr?® linear equations in the elementsspf...,s, ,, but one can (and
should) take into account th§f is symmetric and, contains therefore duplicated elements. gbe
a lower triangular matrix such thg = §+ $ (the diagonal elements & are halved compared with
S) and let§, = vechS) (the ¢ (r +1)/2)-vector obtained by removing the duplicated elet®émms,).
Let alsoJ be anr?xr (r +1)/2 matrlx such that post-multiplication with it renes/columns + 1, 2 +
1, 2+2,3+1,3+2,3+3,...,r’=1 Then a term of the typ4s, in (B.3) may be rewritten:

As,=(10A)g =vec(AS IM)= vec(AS+ AS ) (A Avec s (A A5, (B4)
For (B.2) it is not difficult to verify that

(AOA)=(AOA+AA)vec(S)=(A 0A+AA)E,

and furthermore thag, = Dvec(SO whereD is diagonal withd; = 2 wheni corresponds to a diagonal
element in§ (i.e.i = 1, r + 2, 2 +3, ...); otherwised, = 1. The matrlepAb is a block-matrix with
(i,])-block equal taapJ i

Finally, the upper triangle of (B.2) should be opa@®d. These modifications result in
r’p—r(r —1)/2 equations in the same number of unknowns, the exl@mofs,, s, ..., s,; (B.2) be-
comes

((0-A0A-AR) &-377(AD 1+ AD A)s)= I(vec ¢+ (AT )g) (©5)
and (B.3) is modified using (B.4).

C. TIME SERIES SIMULATION

Simulation of VARMA time series has many applicagce.g. to create test data for modelling meth-
ods, analyze such methods, and forecast with fittedels. Given values @f, x, fort =1,... ,h where

h = max(p,q, one may drave, from N(0,Z) fort =h+1,h+ 2,... and apply (2.2) and (2.1) to obtain
simulated values of, for t > h. If the starting values are not given, one mayt stéth any values, for
example zeros, and, after simulating, discard &ralirsegment to avoid spin-up effects. This is for
example done in the routira@sim of [Schneider and Neumaier 2001]. For process#s stiort mem-
ory, this procedure works well and the discardegivemnt need not be very long, but for processes that
are nearly non-stationary it may take a long tiraéote they reach their long-term qualities, it ii-d
cult to decide the required length of the initiagment, and the initial extra simulations may bstlgo
These drawbacks may be avoided by drawing valussatd the simulation from the correct distribu-
tion.

Letx' = (X{,...,X; )" have meam' and covariance matri§', € = (g, ,...,& )" have covariance ma-
trix ', and letC' = cov(x, £'). S, ' andC' are given with (2.7) and (2.8) and solution of Heetor-
Yule-Walker equations (2.10) applying (3.5) if nesary, andy’ is therh-vector(n',...,n")". Starting
values forx' may be drawn fromN(p',Z"), and starting values faf (that are needed if there are mov-
ing average terms) may be drawn from the conditidisribution of¢’ | X', which is normal with ex-
pectationC'" S*(x' —p') and covariance matriX' —C'"S™* C. This conditional distribution may also
be used to draw’ whenx,..., X, are given and,, ..., g, are unknown, for example when forecasting
with a moving average model. This procedure haa bmplemented in [Jonasson 200 xxx].
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D. DETERMINANT OF A LOW RANK UPDATE

The economical evaluation of the determinant ofddnariance matrix of the observations in the miss-
ing value case, described at the end of Sectioni8.iased on the following theorem. As we have
been unable to locate a proof of this useful fadhe published literature, we include it heredom-
pleteness. An immediate consequence of the theigrémat the determinant of a low rank update of an
arbitrary matrixM may often be evaluated efficiently usidgt(M +UV "™ = detM det( +V' MU ,

in this way complementing the Sherman-Morrison-Wmog formula.

Theorem. If Ais mxn, Bisnxmandl  andl  are themth andn-th order identity matrices then
det(,, + AB) = det(, + BA).

Proof. Let C andD be mx m andnx n invertible matrices such théIADz('(k) 8) and letD™BC™ =
(B 5 be a partitioning wittB, ak x k matrix. Then
3 4

det(, +AB)= de(C‘lc+ cl{'(; 8} D* S: gﬂ cj

:det((:‘l)de(lm+[|6 g}{& %D decC
e
B
B

st

The matricesC andD may, for example, be obtained from the singuldueralecomposition oA
[Golub and Van Loan 1983].

=det(, +BA).
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