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A detailed description of an algorithm for the evaluation and differentiation of the likelihood function for VARMA processes 
in the general case of missing values is presented. The method is based on combining the Cholesky decomposition method 
for complete data VARMA evaluation and the Sherman-Morrison-Woodbury formula. Potential saving for pure VAR proc-
esses is discussed and formulae for the estimation of missing values and shocks are provided. The paper concludes with de-
scription of numerical results obtained with a Matlab implementation of the algorithm, which is in a companion paper. Dif-
ferentiation with respect to matrices, solution of vector-Yule-Walker equations, VARMA model simulation and the determi-
nant of a low rank update are discussed in appendices. 
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1.   INTRODUCTION 

A key aspect for parameter estimation of autoregressive moving average (ARMA) processes is the 
efficient evaluation of the likelihood function for the parameters. In practice multivariate or vector-
valued processes (VARMA) are important, as well as the more general case of missing values. Evalua-
tion of the gradient of the likelihood function is also important for its maximization using traditional 
numerical optimization. 
 This paper provides detailed practical formulae for calculating the value and the gradient of a 
VARMA likelihood function, both for the complete data case, and when there are missing values. A 
companion algorithm paper [Jonasson 200 xxx] presents Matlab programs that implement these for-
mulae, along with a demonstration on how to carry out actual parameter estimation. Both the ability to 
deal with missing values and to evaluate gradients are beyond the capabilities of previously published 
programs. The technique used to treat missing values is also new. 
 We concentrate on the exact likelihood function, not the conditional likelihood (where the initial 
shocks are assumed to be zero), both because the latter is not easily applicable when values are miss-
ing or when the model has moving average terms, and also because the exact likelihood does in many 
practical applications give significantly better parameter estimates. An alternative to using classical 
numerical optimization to maximize the likelihood is to use the EM-algorithm, which may in some 
situations be the method of choice in the presence of missing values. Application of the EM-algorithm 
to VARMA time series is discussed in a new paper [Metaxoglou and Smith 2007]. 
 Three approaches to calculating exact likelihood of univariate ARMA processes have been de-
scribed in the literature: (A) one that we shall refer to as the presample method described by Siddiqui 
[1958] for pure MA processes, (B) the Cholesky decomposition method, first described by Phadke and 
Kedem [1978], and (C) a state space Kalman filter method described by Harvey and Phillips [1979]. 
Several authors have described improvements and generalizations of the originally proposed methods, 
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in particular, all three approaches have been generalized to multivariate models and to univariate mod-
els with missing values, and the Kalman filter method has been extended to the missing value multi-
variate case. An overview of the developments is given by Penzer and Shea [1997]. Among the papers 
discussed there are [Ljung and Box 1979] describing a computationally efficient multivariate imple-
mentation of the presample method, [Jones 1980] extending the Kalman filter approach to ARMA 
with missing values, and [Ansley and Kohn 1983] describing a Kalman filter method to evaluate 
VARMA likelihood when values are missing. This last method has been publicized in several text 
books. The Penzer and Shea paper itself deals with extending the Cholesky decomposition method to 
the univariate missing value case. In addition to the references in [Penzer and Shea 1997], Ljung 
[1989] discusses estimation of missing values for univariate processes, Mauricio [2002] gives details 
of a complete data multivariate implementation of the Cholesky decomposition method, and Mélard, 
Roy and Saidi [2006] describe estimation of structured VARMA models with complete data, allowing 
unit roots. 
 Two Fortran programs for VARMA likelihood evaluation in the complete data case have been pub-
lished: the Kalman filter method is implemented by Shea [1989], and the presample method by Mauri-
cio [1997]. In addition, pure VAR models (with complete data) may be fitted using the Matlab pack-
age ARfit, described and published in the pair of papers Neumaier and Schneider [2001] and Schnei-
der and Neumaier [2001]. 
 The Cholesky decomposition method has some advantages. For the complete data case it is consid-
erably simpler and more direct than the other two approaches. Both Penzer and Shea [1997] and Mau-
ricio [2002] compare its efficiency with the Kalman filter method and find that it is faster in the impor-
tant case when there are more autoregressive terms than moving average terms (cf. Table 1 on p. 925 
in Penzer and Shea’s paper and Table 1 on p. 484 in Mauricio’s paper). As detailed by Penzer and 
Shea, many authors have also pointed out that for the missing value case the filtering approach may 
suffer from numerical instabilities, and although remedies have been suggested, they come at some 
computational cost. 
 In this paper we take the Cholesky approach. To review its history briefly, the original article of 
Phadke and Kedem [1978] treats VMA models, extension to ARMA models is in [Ansley 1979], 
Brockwell and Davis [1987, Ch. 11] describe a VARMA implementation (they and some other authors 
refer to the method as the innovation method) and Penzer and Shea [1997] provide a way of handling 
missing values in the ARMA case, albeit not the same as our way. To our knowledge, the current pa-
per is the first one to give details of extending the Cholesky decomposition method to the missing 
value VARMA case, as well as being the first paper to provide derivative formulae. It could be argued 
that it would have been more useful to give details and an associated publicly available program for 
the Kalman filter method. According to Ansley and Kohn [1983] missing values do not add to the 
computational cost of the filtering method, but with the current method many missing values are 
costly. However few missing values do not cost much, so judging by the results quoted in the previous 
paragraph our approach wins in that case.  
 The paper is organized as follows. Section 2 introduces the basic notation and reviews the Cholesky 
decomposition method for the complete data case. Section 3, the main section of the paper, describes 
our approach to dealing with the missing value case. Section 4 describes the main ideas and techniques 
used to compute the derivative of the likelihood function. Section 5 presents some numerical experi-
ments that complement the paper. The appendices present technical material. Appendix A describes 
our approach to differentiation with respect to matrices, Appendix B describes our solution to the 
Yule-Walker equations, Appendix C describes how to generate simulated time series, and, finally, 
Appendix D provides the proof of a result used in the paper. 
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2.   NOTATION AND THE CHOLESKY DECOMPOSITION METHOD 

2.1  Model notation 
A VARMA model describing a time series of values r

t ∈x ℝ  for integer t is given by: 

 
1

( )
p

t j t j t
j

A −
=

− = − +∑x µ x µ y  (2.1) 

where, 

 
1

q

t t j t j
j

B −
=

= +∑y ε ε , (2.2) 

µ is the expected value of tx , the jA ’s and the jB ’s are r × r matrices, and the tε ’s are r-variate ( , )N Σ0  
uncorrelated in time. Let θ  denote the 2( ) ( 3) 2p q r r r+ + + -dimensional vector of all the parameters 
(the elements of the jA ’s, the jB ’s, Σ and µ; Σ being symmetric). If there are no missing values, ob-
servations tx  for t = 1,…, n are given, and x denotes the nr-vector T T T

1( ,..., )nx x  of all these values. When 
there are missing values the observations are limited to a subvector o

N∈x ℝ  of x, and m
M∈x ℝ  is a 

vector of the missing values, say 
1m ( ,..., )

Mm mx x=x . If the time series is stationary then the complete 
data log-likelihood function is given by 

 ( )1 T 1
2

( ) log 2 logdet ( ) ( )l nr S Sθ π −= − + + − −x µ x µ  (2.3) 

where cov ( )S θ= x  and T T TE ( ) ( , , )θ= =µ x µ µ… . The log-likelihood function for the observed data is 
given by 

 ( )1 T 1
o o o o o o o2
( ) log2 logdet ( ) ( )l N S Sθ π −= − + + − −x µ x µ  (2.4) 

where o ocov ( )S θ= x  is obtained from S by removing rows 1m,…, Mm  and columns 1m,…, Mm , and oµ  
= oE ( )θ x  is obtained from µ by removing components 1m,…, Mm  (see for example [Ljung 1989]). 
 We have included the mean of the series among the parameters, instead of assuming a zero-mean 
process as is customary in the literature. This is not important when there are no missing values: one 
can simply subtract the mean of the series. When there are missing values, this might however cause a 
bias. Say a weather station was out of function during a cold spell. Then the mean of all observed tem-
perature values would probably overestimate the true mean, but if other nearby stations were measur-
ing during the cold spell then maximizing the likelihood of a VARMA model with the mean as a free 
parameter would avoid this bias. 

2.2  Likelihood evaluation for complete data 

We now turn attention to the evaluation of (2.3) and proceed in a similar vein as Mauricio [2002] and 
Brockwell and Davis [1987] (and as briefly suggested in [Penzer and Shea 1997]). From (2.1),  

 1 ( )p
t t j t jj A −== − − −Σy x µ x µ  

for t > p. Let tw  = t −x µ for t ≤ p and tw  = ty  for t > p and let w = T T T
1( ,..., )nw w . Then w = ( )Λ −x µ  

where Λ is the nr × nr lower triangular block-band matrix given by 

 
1

1

p

p

I

I
A A I

A A I

 
 
 
 Λ = − − 
 
 − −  

⋱

⋯

⋱ ⋱ ⋱

⋯

. (2.5) 
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Now let jC  = cov( , )t t j−x ε , cov( , )j t t jG −= y x , cov( , )j t t jW −= y y  and jS  = cov( , )t t j−x x ,  (all these are r 
× r matrices). Note that with this notation, 

 

T T
0 1 1

1 0
T
1

1 1 0

n

n

S S S
S S

S
S

S S S

−

−

 
 
 =
 
  

⋯

⋱ ⋮

⋮ ⋱ ⋱

⋯

. (2.6) 

Furthermore, let iA and jB  be zero for i and j outside the ranges implied by (2.1). By multiplying 
through (2.1) from the right with Tt j−ε  for j = 0,…, q and taking expectations the following recurrence 
formulae for 0C , 1C , 2C ,… are obtained: 

 1 1 0j j j qC AC A C B−= + + + Σ… ,  for j = 0, 1,… (2.7) 

(so 0C  = Σ). With 0B  = I, we have by (2.1) and (2.2): 

 T T
0j j q q jG B C B C−= + +… ,  for j = 0,…, q, (2.8) 

 T T
0j j q q jW B B B B−= Σ + + Σ… ,  for j = 0,…, q. (2.9) 

For j < 0 or j > q, jC , jG  and jW  are zero. By multiplying (2.1) from the right with T( )t j− −x µ  for j = 
0,…, p and taking expectations one gets the following linear system (the vector-Yule-Walker equa-
tions) for the 2( 1) 2r r pr+ +  elements of 0S ,…, pS  (note that 0S  is symmetric): 

 

T T
0 1 1 0

T T
1 1 0 2 1 1 1

T T
2 1 1 2 0 3 1 2 2

1 1 2 2 0

p p

p p

p p

p p p p p

S A S A S G

S A S A S A S G

S A S A S A S A S G

S A S A S A S G

−

−

− −

− − − =

− − − − =

− − − − − =

− − − − =

…

…

…

⋮

…

 (2.10) 

The solution of (2.10) is dealt with in Appendix B. If q ≤ p, the covariance matrix of w will be given 
by the nr × nr matrix: 
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T T
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1
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q
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q
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 
 
 
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Ω =  
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 
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⋱ ⋮

⋮ ⋱ ⋱ ⋮ ⋱

⋯ ⋯
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⋱ ⋮ ⋱
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⋱ ⋱ ⋮

⋱

⋯

 (2.11) 

If q > p the depiction is slightly different, the pr × (n – p)r upper right partition of Ω will be 

 T T

T T T
1 2

p q

q

G G

G G G

 
 
 
  

⋯

⋮ ⋱

⋯ ⋯

, 
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the lower left partition will be the transpose of this, but the upper left and lower right partitions are 
unaltered. Since Λ has unit diagonal, one finds that 

 ( )1 T 1
2

( ) log 2 logdetl nrθ π −= − + Ω + Ωw w  (2.12) 

To evaluate (2.12) it is most economical to calculate the Cholesky-factorization TLLΩ =  exploiting the 
block-band structure and subsequently determine z = 1L− w using forward substitution. Then the log-
likelihood function will be given by  

 T1
2

( ) ( log 2 2 log )i iil nr lθ π= − + +Σ z z .  (2.13) 

We remark that the exposition in [Brockwell and Davis 1987] is significantly different from ours. 
They talk of the innovation algorithm but it turns out that the actual calculations are identical to the 
Cholesky decomposition described here. 

2.3  Operation count for complete data 
Let h = max( , )p q  and assume that q > 0 (see Section 3.4 for the q = 0 case). Given x it takes 

2 ( )r p n p−  multiplications to calculate w. Determining the jC ’s for j ≤ q, jG ’s and iW’s with (2.7), 
(2.8) and (2.9) costs about 3 2 2(min( , ) 2 )r p q q+  multiplications and solving the system (2.10) takes 
roughly 6 3 3r p  multiplications. The cost of the Cholesky-factorization of Ω will be about 3( ) 6rh  
multiplications for the upper left partition and 3 2( )( 2 7 6)r n h q− +  for the lower partition. Finally, the 
multiplication count for the forward substitution for z is about 2 2( 2 ( 2 )( ))r h p q n h+ + − . 
 To take an example of the savings obtained by using  (2.13) rather than (2.3) let p = q = 3, r = 8 and 
n = 1000. Then Cholesky-factorization of S will cost 38000 6 108.5 10≈ ⋅  multiplications (and take 
about 7 min. on a 1600 MHz Pentium M processor) but calculation with (2.13), including all the steps 
leading to it, will take 64.0 10⋅  multiplications (and take 0.02 s). 

3.   MISSING VALUE CASE 

3.1  Likelihood evaluation via the Sherman-Morrison-Woodbury formula 

We now consider the economical evaluation of (2.4) in the presence of some missing observations. As 
is customary, we assume that observations “are missing at random”, i.e. that whether an observation is 
missing does not depend on its numerical value. 
 Consider first the term T 1

o o o o o( ) ( )S−− −x µ x µ . Let Ω, Λ and S be obtained from Ω, Λ and S by 
placing rows and columns 1,...., Mm m  after the other rows and columns and partition them as follows 
(with oΩ , oΛ  and oS  being N × N, and mΩ , mΛ  and mS  being M × M): 

 o om o om o om

mo m mo m mo m

,  ,  and 
S S

S
S S

Ω Ω Λ Λ     Ω = Λ = =     Ω Ω Λ Λ     
. 

By the definition of w, Ω = TSΛ Λ  and therefore 

 T T T T
o o o o o om om om mo o om m omS S S SΩ = Λ Λ + Λ Λ + Λ Λ + Λ Λ . (3.1) 

oΛ  is obtained from Λ by removing rows and corresponding columns, and it is therefore an invertible 
lower band matrix with unit diagonal and bandwidth at most rp, and oΩ  is obtained from Ω by remov-
ing rows and corresponding columns, so it is also a band matrix and its triangular factorization will be 
economical. It is thus attractive to operate with these matrices rather than the full matrix oS . Defining  

 T
o o o oSΩ = Λ Λɶ  (3.2) 

and o o o( )= Λ −w x µɶ  we have T 1 T 1
o o o o o o o o( ) ( )S− −− − = Ωx µ x µ w wɶɶ ɶ . Also, from (3.1) and (3.2) 

 T T T T
o o o om om om om o om m omS S SΩ = Ω − Λ Λ − Λ Λ − Λ Λɶ , (3.3) 
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(keep in mind that S is symmetric). The matrices omS , omΛ  and o omS Λ   are N M× , so if the number of 
missing values, M, is (considerably) smaller than the number of observations, N, then (3.3) represents 
a low rank modification of oΩ . This invites the use of the Sherman-Morrison-Woodbury (SMW) for-
mula [Sherman and Morrison 1950; Woodbury 1950; c.f. Golub and Van Loan 1983]. To retain sym-
metry of the matrices that need to be factorized, (3.3) may be rewritten as: 

 1 T 1 T
o o m mUS U VS V− −Ω = Ω + −ɶ  (3.4) 

where U = o omSΛ  and o om om mV S S= Λ + Λ . It turns out that U is generally a full matrix but V is sparse, 
and it will transpire that it is possible to avoid forming U.  
 To obtain V economically, select the observed rows and missing columns from ΛS. From (2.5), 
(2.6) and proceeding as when deriving (2.10) the following block representation of ΛS for the case q > 
p is obtained: 

 

T T
0 1 1

T T
1 0 1

1 0 1 1

1

0

n

p n p

p n p

q

q

S S S

S S S S

G G G G G
S

G

G
G G

−

− −

− − + +

−

 
 
 
 
 

Λ =  
 
 
 
 
  

⋯

⋮⋱⋮

⋯ ⋯

⋯ ⋯

⋮ ⋱ ⋮

⋮

⋱ ⋱

⋯

. 

For q ≤ p the upper partition is the same but the lower partition is: 

 

0 1

0

q n p

q

G G G

G G

− + + 
 
 
 
  

⋯ ⋯

⋱ ⋱ ⋮

⋱ ⋱ ⋮

⋯

. 

For 1 1,...,p nS S+ − , multiply (2.1) from the right with T( )t j− −x µ  for j = 1p + ,…, 1n−  and take expecta-
tions (as when deriving (2.10)), giving  

 1 1 2 2j j j p j p jS A S A S A S G− − −= + + + +…   (3.5) 

with pG  = 0 for p > q. The jG  for negative j may be obtained using: 

 T T T
1 1j j j q j qG C B C B C− + += + + +…  

where the iC ’s are given by the recurrence (2.7). 
 From (2.10) and (3.5) it follows that blocks ( , )i j  with i > j + q of ΛS are zero, giving almost 50% 
sparsity. If the missing values are concentrated near the beginning of the observation period then V 
will be sparser still. This applies, for example, when the series represent measurements that did not all 
start at the same time, as will often be the case in practice. To take an example, if q = 1, r = 2, n = 6 
and m = (2, 3, 4, 5, 9) then the sparsity pattern of V will be: 

 

× × × × × 
× × × × 

× × × × ×
 × 

 

 The SMW formula applied to (3.4) gives 
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 1 1 1 1 T 1
o o o o

ˆ ˆ ˆVQ V− − − − −Ω = Ω + Ω Ωɶ   

where 

 1 T
o o m

ˆ US U−Ω = Ω +  (3.6) 

and Q is the M × M matrix T 1
m o

ˆS V V−− Ω . Moreover, if R is the M × M matrix T 1
m oS U U−+ Ω  then 

(again by the SMW formula):  

 1 1 1 1 T 1
o o o o

ˆ UR U− − − − −Ω = Ω − Ω Ω .  

If RL  is the Cholesky factor of R and K = 1 T 1
oRL U V− −Ω  it follows that Q = T 1 T

m oS V V K K−− Ω + . The first 
method that springs to mind to evaluate T 1

oV V−Ω  efficiently is to Cholesky factorize T
o LLΩ = , use for-

ward substitution to obtain V̂  = 1L V−  and form Tˆ ˆV V . However, with this procedure V̂  will be full and 
the computation of Tˆ ˆV V  will cost ( 1) 2NM M +  multiplications. In contrast, if an TL L-factorization of 

oΩ  is employed instead of an TLL -factorization the sparsity of V will be carried over to ̂V  with large 
potential savings. This is a crucial observation because, with many missing values, multiplication with 
V̂  constitutes the bulk of the computation needed for the likelihood evaluation. 
 Thus the proposed method is: TL L-factorize T

o o oL LΩ = , and back-substitute to get T
oV̂ L V−=  and 

T
om o om

ˆ L−Λ = Λ , making use of known sparsity for all calculations (the sparsity structure of omΛ̂  will be 
similar to that of ̂V). With VR  = Tˆ ˆV V , RΛ = T

om om
ˆ ˆΛ Λ  and P = T

om
ˆ V̂Λ  (again exploiting sparsity) we find 

that R = T
m m m m m VS R S R S S P P SΛ+ + − −  (all matrices in this identity are full M × M), K = 1( )R VL R P− −  

and Q = T
m VS R K K− + . Let further QL  be the Cholesky factor of Q, 1

o o oˆ L−=w wɶ , u = 
1 T T

o m om o
ˆ ˆˆ ˆ( )RL V S− − Λw w  and 1 T T

o
ˆ ˆ( )QL V K−= −v w u . A little calculation then gives: 

 T 1 T T T
o o o o o o oˆ ˆ( ) ( )S−− − = − +x µ x µ w w u u v v. 

 Now turn attention to the other nontrivial term in (2.4), ologdetS . From det( )I AB+  = det( )I BA+  
(see Appendix D) we get 1 Tdet( )X AY A−±  = 1 T 1det det det( )X Y X A Y A− −± . From (3.3), (3.6) and the 
definition of QL , odetΩɶ  = 1 T

m
ˆdet( )VS V−Ω −  = 1 T 1

o m m o
ˆ ˆdet det det( )S S V V− −Ω − Ω  = 1 2

o m
ˆdet det det( )QS L−Ω . 

Similarly, o
ˆdetΩ  = 1 T

o mdet( )US U−Ω +  = 1 T 1
o m m odet det det( )S S U U− −Ω + Ω  = 1 2

o mdet det det( )RS L−Ω . 
Since det oΛ  = 1 it now follows from (3.2) and the definition of oL  that 

 o o mlogdet 2(logdet logdet logdet logdet )R QS L L L S= + + − . 

3.2  Estimating missing values and shocks 

An obvious estimate of the vector of missing values is its expected value, m m oE( | , )E θ=x x x , where θ   
is the maximum likelihood estimate of the parameters (this is also the maximum likelihood estimate of 

mx ). Since moS  = m ocov( , )x x  and oS  = var( ox ), 

 1
m mo o o o m( )E S S−= − +x x µ µ . 

(where mµ  consists of missing components of µ). Similarly, the maximum likelihood estimate of the 
shocks tε  is given by oE( | , )E

t t θ=ε ε x . For 0 ≤ j ≤ q, Tcov( , )t t j jC+ =ε x  and tε  is independent of t j+x  for 
other j. It follows that E

ε  = 1
o o o( )CS− −x µɶ  where E

ε  is the column vector with 1 ,...,E E
nε ε  and Cɶ  is ob-

tained by removing missing columns from the nr × nr matrix: 

 T T
0 1

0
T

T
0 1

0

q

q

C C C

C

C

C C
C

 
 
 
 
 
 
 
  

⋯

⋱

⋱

⋱ ⋮
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With some calculation one may verify that given the matrices and vectors defined in the previous sec-
tion, the estimates of mx  and ε may be calculated economically using: 

 m m 2 m
E S= +x v µ , 

and 

 T T
o o o 1 2 om m 2

ˆ ˆˆ( ( ) )E C L V S−= Λ + − − Λε w v v vɶ  

where T
1 QL−=v v and T

2 1( )RL K−= +v u v . 

3.3  Simplification for pure autoregressive models 
If q is zero and there are no moving average terms considerable simplification results, and it is worth-
while to review this case. Since t t=y ε  for all t the jG  and jW  matrices will all be zero apart from 0G  
and 0W , which are both equal to Σ. The upper left S-partition of Ω in (2.11) will be unchanged, the G-
partition will be zero and the lower-right W-partition will be a block diagonal matrix where each block 
is equal to Σ. For the missing value case, oΩ  needs to be Cholesky factorized. It is obtained by remov-
ing rows and corresponding columns from Ω, so that its upper left partition is the same as in the gen-
eral ARMA case, but the lower right partition is a block diagonal matrix: 

 

o1

o

o,n p

2

−

Σ 
 Σ
 
 

Σ  

⋱
 

where oiΣ  contains rows and columns of Σ corresponding to the observed indices at time p + i. To ob-
tain oL  it is therefore sufficient to Cholesky factorize oiΣ  for each missing pattern that occurs, which in 
all realistic cases will be much cheaper than Cholesky factorizing the entire oΩ -matrix. 

3.4  Operation count for missing value likelihood 

Finding the jC ’s, jG ’s and jW ’s and jS ’s will be identical to the complete data case. The Cholesky fac-
torization of oΩ  costs at most 2 2( 2 7 6)r N q +  multiplications (unless the upper left partition is unusu-
ally big). Forming ΛS costs  about 3(2 )( )r p q n p+ −  multiplications. The cost of forming omΛ̂  and V̂  
using back substitution depends on the missing value pattern. In the worst case, when all the missing 
values are at the end of the observation period the cost is approximately rqNM multiplications for 
each, since the bandwidth of both is ≤ rq, but as explained in Section 3.1 the missing values will often 
be concentrated near the beginning and the cost will be much smaller. The cost of VR , RΛ and P also 
depends on the missing value pattern. In the worst case the symmetric VR  and RΛ cost 2 2NM  multi-
plications each and P costs 2NM , but the typical cost is again much smaller (for example, with the 
“miss-25” pattern of Table I the cost is 5 times smaller). Next follows a series of order 3M  operations: 

mS P costs 3M , R costs 33 2M , K and Q cost 3 2M  multiplications each. Finally the Cholesky factori-
zations for each of RL , QL  and mdetS  cost 3 6M  multiplications. The multiplication count of other cal-
culations is negligible by comparison unless M is very small. When n and M are large compared to p, 
q and r the governing tasks will cost 2 22 4fNM M+  multiplications where f  is the savings factor of 
having the missing values early on. 
 In the pure autoregressive case the jC ’s, jG ’s and jW ’s come for free, but solving the vector-Yule-
Walker equations costs the same as before. The cost of Cholesky factorizing Ω will usually be negli-
gible, and much cheaper than when q > 0. When nothing is missing, it is the number rpN of multipli-
cations to find w and the number 2rpN  of multiplications of the forward substitution for z that gov-
ern the computational cost. On the negative side, there will be no savings in the governing tasks when 
M and n are large. 



 

 9 

4.   DERIVATIVE OF THE LIKELIHOOD FUNCTION 
Several different matrix operations that need to be differentiated may be identified. Matrix products 
are used in the calculation of w and the covariance matrices iC , iG  and iW, Cholesky factorization 
gives Ω, linear equations are solved to obtain the iS-matrices and z, and lastly one must differentiate 
log det L. In the missing value case, several more matrix products, Cholesky factorizations, linear 
equation solutions and determinants occur.  
 Nel [1980] reviews and develops matrix differentiation methods of scalar and matrix-valued func-
tions with respect to scalars and matrices. He discusses three basic methods, and concludes that a 
method that he calls the element breakdown method is best for general purposes, and this is the ap-
proach we take. For the change of variables described in Section 4.3 we also make use of his vector 
rearrangement method. 
 Since there is no commonly used notation for differentiation with respect to matrices, we provide 
the needed notation and formulae in Appendix A for clarity and ease of reference. 

4.1  Derivatives of the r × r covariance matrices 
 The matrices iC , iG  and iW are all simple matrix-polynomials in the parameter matrices (the iA’s, 

iB ’s and Σ), and it is not difficult to verify that they can all be obtained by applying a sequence of op-
erations of the following types: 

 
T

T

F F XY
F F XY
F F XG
F F XG

← +
← +
← +
← +

 (4.1) 

where F is the polynomial, X and Y are independent variables (parameter matrices), and G is also a 
polynomial obtained through such steps. Initialization can be either F O←  (the r × r zero matrix) or 
F X←  (one of the parameter matrices). The operations (4.1) can all be differentiated using (A.3) and 
(A.4) as detailed in the following table, where X, Y and Z are different parameter matrices: 

Corresponding change to: 
Change to F: [ ] lcdF dZ  [ ] lcdF dX  [ ] lcdF dY  

XY+  0 T
l cY+e e  T

l cX+ e e  
TXY+  0 T T

l c Y+e e  T
c lX+ e e  

XG+  [ ] lcX dG dZ+  T[ ] lc l cX dG dX G+ + e e   
TXG+  T[ ] lcX dG dZ+  T T T T[ ] lc l cX dG dX G+ + e e   

For the first few applications of (4.1) the derivatives will be sparse, and for small p, q and/or n it may 
be worthwhile to exploit this sparsity. There are 5 possible sparsity patterns for dF dX:  

1) all elements are zero 
2) in the ( , )i j -block only the ( , )i j -element is nonzero 
3) only the i-th row in the ( , )i j -block is nonzero 
4) only the j-th column in the ( , )i j -block is nonzero 
5) the matrix is full 

As an example, let p = 1, q = 2 and consider the differentiation of 0C , 1C , and 2C . These matrices are 
given by 0C  = Σ, 1C  = 1 1A BΣ + Σ (the first operation of (4.1) twice) and 2 1 1 2C AC B= + Σ (the third op-
eration of (4.1) followed by the first operation). Treating Σ as non-symmetric to begin with, one ob-
tains: 
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T T
0 1 1 1 2 1 1 1 1 2

T T
0 1 1 1 2 1 1 1 1 2

T
0 2 1 2 2 2

T T
0 1 1 1 2 1 1

0 [ ] [ ] [ ]

0 [ ] [ ] [ ]

0 0 [ ]

[ ] [ ] ( ) [ ] [

lc l c lc lc l c

lc l c lc lc l c

lc l c

lc l c lc l c lc

dC dA dC dA dC dA A dC dA C

dC dB dC dB dC dB A dC dB C

dC dB dC dB dC dB

dC d dC d A B dC d A dC d

= = Σ = +
= = Σ = +
= = = Σ

Σ = Σ = + Σ = Σ

e e e e

e e e e

e e

e e e e T
2] lc l cB+ e e

 

Here all the sparsity patterns are represented and the only full matrices are the derivatives of 2C  with 
respect to 1A  and 1B . Finally, the derivatives with respect to the symmetric Σ are adjusted using (A.7). 
 Now we turn attention to the vector-Yule-Walker equations (2.10). Differentiating through these 
with respect to a parameter gives: 

 
( ) ( )

( ) ( )
T T

, 1 1, 0, 1 1, ,

T T
1, 1 , 0 1, 1

( ) ( )

 for 0, , .

j lc j lc j lc j lc p p j lc

lc lc j j lc j lc p p j

S A S A S A S A S

G A S A S A S A S j p

− + −

− + −

′ ′ ′ ′ ′− + + − + +

′ ′ ′ ′ ′= + + + + + + =

… …

… … …
 (4.2) 

This set of equations has exactly the same coefficient matrix as the original equations (2.10), but a dif-
ferent right hand side which can be obtained using the formula for ( )d XA dX in (A.4) (sparsity can be 
exploited). It can therefore be solved to obtain the derivatives of 0,..., pS S using the same factorization 
as was used to obtain the jS . 

4.2  Remaining steps in likelihood gradient calculation 

 It follows from (4.1) that the derivative of ty  (and thereby tw ) with respect the jB ’s and Σ is zero, 
and (A.5) gives its derivative with respect to the jA ’s and µ. For complete data, the next needed de-
rivative is that of L, the Cholesky factor of Ω. As the derivative of all the submatrices of Ω have been 
found, this may be obtained using (A.10) and (A.11), making necessary modifications to take advan-
tage of the block-band structure of Ω. To finish the calculation of the gradient of l(θ) in (2.13), use Lz 
= w together with (A.8) to differentiate z, followed by (A.6) to differentiate Tz z, and finally use 

(log )iid l dX  = (1 )ii iil dl dX . 
 In the missing value case, the operations that must be differentiated are the same: matrix products, 
Cholesky factorization, forward substitution, and determinants of lower triangular matrices, and there 
is no need to give details of all of them. They have been implemented in [Jonasson 200 xxx] by writ-
ing functions that implement (A.3), (A.9), (A.10) and (A.11). 

4.3 Operation count for gradient calculation and possible savings 

Inspection of the formulae in Appendix A for the derivatives of the most costly operations, namely 
matrix products, Cholesky factorization and forward substitution, shows that they all cost approxi-
mately 2nθ times more multiplications than the original operations being differentiated, where nθ  = 

2( ) ( 1) 2r p q r r+ + +  is the total number of model parameters excluding µ which does not enter the 
costly operations. The gradient calculation will therefore usually dominate the total work needed for 
likelihood maximization and this is confirmed by the numerical results of Section 5. 
 One way of trying to reduce this work would be to use numerical gradients in the beginning itera-
tions, when the accuracy of the gradients is not as important as closer to the solution. Using forward 
differencing, ( ) ( )k lθ θ∂ ∂  = ( )( ) ( )kl lθ δ θ δ+ −e , the gradient can be approximated with nθ  function 
calls, giving a potential saving of factor 2. However, judging by the results shown in Table II in the 
next section, it seems that this technique is not so useful. 
 Another possibility of speeding the computations exists when estimating seasonal models, struc-
tured models, or various models with constraints on the parameters such as distributed lag models. 
Without entering too much into detail, such models may often be described by writing θ  as a function 
of a reduced set of parameters, ( )gθ φ= , where 

nφφ ∈R  has (often much) fewer components than θ . 
The log-likelihood for a given set of parameters φ  is ( ( ))l g φ , and the corresponding gradient is 

( ( )) ( )gl g Jφ φ′ , where gJ  is the n nθ φ×  Jacobian of the transformation g. The parameter matrices may be 
sparse and it would be possible to exploit the sparsity, but big savings are also possible by multiplying 
with the Jacobian earlier in the computation of the gradient, instead of after evaluating ( )l θ′ . A con-
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venient place to make the change of variables is after the differentiation of w, the jC ’s, jG ’s and jW ’s, 
and the jg ’s in the right-hand-side of (B.3). The costly derivatives come after this, so the potential sav-
ing approaches a factor of n nθ φ . In [Jonasson 200 xxx] this course of action has been implemented, 
and the likelihood routines have gJ  as an optional parameter. 

5.  NUMERICAL EXPERIMENTS 
The methods described in Sections 2−4 have been implemented in Matlab as described in the compan-
ion paper [Jonasson 200 xxx]. The Matlab package also includes a function to simulate time series as 
described in Appendix C below, and a program demonstrating likelihood maximization. In this section 
we report on some experiments carried out with this package. 

5.1 Likelihood maximization  

The primary use of likelihood evaluation is to estimate model parameters by maximizing the likeli-
hood function. The companion paper contains a demonstration program of such parameter estimation. 
Among the models demonstrated are VAR(2) with r = 3, n = 400 and complete data, VAR(2) with r = 
3, n = 200 and 5% missing values (missing pattern “miss-5a” from Table I), and two VARMA(1, 1) 
with r = 2, n = 200, one with complete data and the other with 5% missing. Choosing the ucminf opti-
mization routine (see the companion paper), the parameter estimates for these models were obtained 
using 34, 37, 31 and 47 function-gradient evaluations respectively. Using Matlab 7.1 with its default 
Intel Math Kernel Library (MKL) on an 1830 MHz L2500 Core Duo processor (Lenovo X60s com-
puter) the total execution time for this modelling was 62 seconds. The fminunc optimizer takes about 
60−70% longer. The demonstration program also estimates two VAR models with constraints on the 
parameters, of the type discussed near the end of Section 4.3. The modelling involves real meteoro-
logical data with p = 2 and 3, r = 3, n = 146 and 6.6% of the values missing. Details of the models and 
data are in the companion paper Jonasson [200 xxx] and the data is further described by Hanna, Jons-
son and Box [2004]. The estimation of these two models takes 39 and 41 function and gradient evalua-
tions in 8 and 11 seconds respectively. 
 More complicated models require more iterations and longer execution time. To take some exam-
ples, a VARMA(1, 1) fit with r = 4 and n = 400 took 97 function and gradient evaluations and 7:40 
minutes of execution time and the two meteorological models with n = 208 took 54 and 55 function 
and gradient evaluations 2:36 and 3:09 minutes of execution time. 

5.2 Timing of function evaluations 
The simulation function has been used to generate test data with several models, missing value pat-
terns and dimensions, and these data have been used to test and time the likelihood evaluation func-
tions. The tests were run on a 1600 MHz Pentium M processor (about 3 times slower than the one used 
for Section 5.1). Table I shows the run time in seconds required for one function evaluation for each 
combination of model, missing value pattern, and dimensions. 
 For the pure VAR models the simplifications of Section 3.3 are realized, and for complete data the 
solution to the vector-Yule-Walker equations and the calculation of w and z will govern the computa-
tion. For VMA and VARMA models these calculations still make up a portion of the total, but the fac-
torization of Ω is now more expensive and accounts for most of the difference between the complete 
data execution times of the VAR(1) and VMA(1) models shown in Table I. 
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Table I. Run time in seconds per one function evaluation. The missing value patterns 
shown in the “data” column are a) complete data; b) miss-5a: 5% missing scattered 
in first quarter of each series; c) miss-5b: 5% missing scattered throughout entire se-

ries; d) miss-25: 25% missing — half the series have the first half missing. 

Dimension r = 2 Dimension r = 4 Dimension r = 8 
Model Data n = 100 n = 500 n = 100 n = 500 n = 100 n = 500 

VAR(1) complete 0.01 0.02 0.01 0.03 0.01 0.03 

 miss-5a 0.02 0.10 0.03 0.24 0.05 0.85 

 miss-5b 0.03 0.24 0.04 0.58 0.10 2.21 

 miss-25 0.04 0.73 0.08 4.07 0.35 28.17 

VMA(1) complete 0.04 0.19 0.04 0.21 0.05 0.24 

 miss-5a 0.06 0.29 0.06 0.47 0.09 1.07 

 miss-5b 0.07 0.43 0.08 0.86 0.15 2.78 

 miss-25 0.08 1.00 0.12 4.41 0.39 28.34 

VAR(3) complete 0.01 0.03 0.01 0.03 0.04 0.06 

 miss-5a 0.03 0.11 0.04 0.24 0.08 0.88 

 miss-5b 0.03 0.19 0.05 0.55 0.12 2.19 

 miss-25 0.04 0.73 0.09 4.09 0.37 27.90 

VARMA(2,2) complete 0.05 0.25 0.06 0.27 0.08 0.34 

 miss-5a 0.07 0.33 0.08 0.51 0.13 1.24 

 miss-5b 0.08 0.57 0.10 1.02 0.19 2.98 

 miss-25 0.09 1.02 0.14 4.47 0.44 28.64 

 Missing values add gradually to the cost, and when there are few missing values the execution time 
is only marginally greater than for complete data. When more values are missing the savings in the 
VAR model are gradually eradicated. Now the approximately order 3M  operations (independent of p 
and q) involving the profile-sparse N M×  matrices ̂V  and omΛ̂ , and the full M M×  matrices mS , RΛ, 

VR , P, Q, R and K become more and more important. If these were the only computations one would 
expect a factor 125 difference between n = 100 and n = 500, but because of other calculations that do 
not depend on  M the largest factor in the table is 80 (for VAR(1), miss-25, r = 8). 
 Another feature shown by the table is the difference between miss-5a and miss-5b, corroborating 
the discussion between equations (3.5) and (3.6) in Section 3.1. This ranges from a factor of 1.26 to a 
factor of 2.61, the average being 1.89. 

5.3  Timing of gradient evaluations 

Timing experiments for gradient evaluation were also carried out. It seems most relevant to compare 
with the cost of numerical differentiation. Therefore Table II shows the factor between the time of one 
gradient evaluation and m function evaluations. Where a table entry is less than one, the analytical 
gradients take less time than (maybe inaccurate) forward-difference numerical gradients, and where it 
is less than two the analytical gradients are cheaper than central-difference numerical gradients. The 
average of the 70 factors shown in the table is 0.74. The table is less extensive than Table I because 
the computer used did not have enough memory to time the largest models. The memory was suffi-
cient to time some runs not shown in the table, and the results were comparable to the figures shown 
(the average factor for 11 cases not shown in the table was 0.41). 



 

 13 

Table II. Execution time for one gradient evaluation divided by time for 
m function evaluations where m is the number of model parameters. See 

caption of Table I for explanation of the “Data” column. 

Dimension r = 2 Dimension r = 4 r = 8 
Model Data n = 100 n = 500 n = 100 n = 500 n = 100 

VAR(1) complete 0.40 0.47 0.15 0.17 0.09 

 miss-5a 0.56 0.78 0.35 0.97 0.66 

 miss-5b 0.58 0.66 0.50 1.02 0.77 

 miss-25 0.83 2.04 1.33 2.22 2.11 

VMA(1) complete 1.16 1.57 1.06 1.08 1.12 

 miss-5a 0.63 0.68 0.33 0.66 0.52 

 miss-5b 0.67 0.76 0.42 0.74 0.65 

 miss-25 0.71 1.39 1.02 2.01 1.92 

VAR(3) complete 0.23 0.26 0.10 0.11 0.05 

 miss-5a 0.35 0.62 0.30 1.09 0.50 

 miss-5b 0.38 0.82 0.42 1.05 0.72 

VARMA(2,2) complete 1.10 1.19 1.07 1.17 1.08 

 miss-5a 0.34 0.45 0.27 0.66 0.55 

 miss-5b 0.36 0.51 0.38 0.75 0.74 

The relative cost of gradient evaluation is somewhat lower than expected at the outset, as the deriva-
tive of many basic linear algebra operations with the formulae of Appendix A cost 2m times more than 
the operations themselves. This could be because the evaluation of the gradient involves larger matri-
ces, thus making better use of the Intel MKL. The variable power of the MKL explains partly the vari-
ability of the numbers in Table II, but the rest of the disparity probably occurs because different de-
rivative routines make unlike use of the power of Matlab. 

APPENDICES 

A.  DIFFERENTIATION WITH RESPECT TO MATRICES 

Many of the identities that follow may be found in [Nel 1980]; see also [Golub and Van Loan 1983]. If 
f is differentiable function on the set of M × N matrices, f : M N× →ℝ ℝ, then the N × M matrix with 
( , )i j -element ijf x∂ ∂  will be denoted by ( )f X′  or df dX. If f is a vector valued function of a matrix, 
f: M N m× →ℝ ℝ  then d dXf  or ( )X′f  denotes the block matrix: 

 
11 1

1

N

M MN

x x

x x

∂ ∂ ∂ ∂ 
 
 ∂ ∂ ∂ ∂ 

f f

f f

⋯

⋮ ⋮

⋯

,  

where each block is an m-dimensional column vector (the k-th block row is actually the Jacobian ma-
trix of f with respect to the k-th row of X). If F is matrix valued, F: M N m n× ×→ℝ ℝ , then dF dX or 

( )F X′  denotes the M × N  block-matrix 

 
11 1

1

N

M MN

F x F x

F x F x

∂ ∂ ∂ ∂ 
 
 ∂ ∂ ∂ ∂ 

⋯

⋮ ⋮

⋯

. (A.1) 

The ( , )l c -block of (A.1) will be denoted by lcF ′ or [ ]lc
dF dX  and it is an m × n matrix with ( , )i j -

element equal to ( )ij lcf X x∂ ∂ . It is now easy to verify, that if a is a scalar and Fɶ  is another matrix 
function with same dimensions as F, then ( )d aF F dX adF dX dF dX+ = +ɶ ɶ . We also have (where 

le  is the l-th unit vector): 



 

 14 

 [ ] T
l clc

dX dX = e e , (A.2) 

and, if G is another matrix function G: M N n k× ×→ℝ ℝ , then 

 [ ]( ) lc lclc
d FG dX FG F G′ ′= + . (A.3) 

A.1  Differentiation of matrix products 
The following special cases are all consequences of (A.2) and (A.3): 

 

T T

T T

T T

[ ]

[ ( ) ] [ ( ) ]

[ ( ) ] [ ( ) ]

[ ( )) ] [ ( ) ]

lc c l

lc l c lc l c

lc lc lc lc

lc lc l c lc lc l c

dX dX

d AX dX A d XA dX A

d AF dX AF d FA dX F A

d XF dX XF F d FX dX F X F

=
= =

′ ′= =
′ ′= + = +

e e

e e e e

e e e e

 (A.4) 

where, in each case, A is a constant matrix with dimensions compatible with those of F and X. When A 
is actually a vector, A = a, we have: 

 
1

T( )

M

d X dX
 
 =
 
 

e
a a

e
⋮ , (A.5) 

and similarly, T T T
1( ) / [ ]Nd X dX=a a e e⋯ . If n = 1 and F is vector-valued, T

1[ , , ]mF f f= =f … , the l-
th block-row of ( )d X dXf  is T

1[ ]l lN lX x x∂ ∂ ∂ ∂ +f f e f…  and the c-th block-column of T( )d X dXf  
is T T

1[ ]c Mc cx x X∂ ∂ ∂ ∂ +f f fe… . Furthermore: 

 T T[ ( ) ] 2 ( )lc lcd dX x= ∂ ∂f f f f  (A.6) 

A.2  Derivative with respect to a symmetric matrix 

When X is square and symmetric and its upper triangle duplicates its lower triangle, the correct deriva-
tives are obtained by using the full X in (A.4), and assigning in the final result: 

 ( , )l c -block ← ( , )l c -block + ( , )c l -block  (for all l, c with l > c) (A.7) 

(only the lower block-triangle is relevant). To take an example let n = 2, 21 12x x=  and consider the cal-
culation of 2

21dX dx . By (A.2) and (A.4), 

 2
21dX dx  = T T

2 1 2 1X X+e e e e  = 12

22 11 12

0x
x x x
 
 + 

 and 2
12dX dx  = T T

1 2 1 2X X+e e e e  = 21 11 22

210
x x x

x
+ 

  
. 

Adding these matrices and letting x denote the duplicated element in X (i.e. x = 12 21x x= ) gives the ma-
trix: 

 11 22

11 22

2
2

x x x
x x x

+ 
 + 

 

which is easily verified to be the derivative of 2X  with respect to x. It would be possible to make the 
calculation of derivatives with respect to symmetric matrices more efficient by developing appropriate 
formulae analogous to (A.4), but the complications would probably be significant and the pay-back 
marginal in the present setting. 

A.3  Derivative of the solution to linear equations 

If the vector y is given by Ay = b then it follows from (A.3) that ( )lc lc lcA x A x′∂ ∂ + = ∂ ∂y y b  and 

lcx∂ ∂y is therefore given by solving the set of linear equations: 
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 ( )lc lc lcA x x A′∂ ∂ = ∂ ∂ −y b y. (A.8) 

We note that the factorization of A used to obtain y can be reused to obtain its derivative. Similarly, if 
the matrix F is given by AF = B then lcF ′ may be obtained by solving: 

 lc lc lcAF B A F′ ′ ′= − . (A.9) 

A.4  Derivative of Cholesky factorization 

If S = TLL  is the Cholesky factorization of a symmetric matrix S it follows from (A.3) that 
T T( )lc lc lcS L L L L′ ′ ′= + . If lcS′ , L and lcL′  are partitioned as follows for a given k 

 
1
T

2 3

lc kk

S

S s
S S

′ 
 ′ ′ ′=
 

′  

s
t

, 
1
T

3 2

kk

L

L l
L L

 
 =
 
  

u
v

 and 
1
T

3 2

lc kk

L

L l
L L

′ 
 ′ ′ ′=
 

′ ′ ′  

u
v

 

then T2( )kk kk kkl l s′ ′ ′+ =u u  and 1 1L L′ ′ ′+ =u u s  so that 

 1 1L L′ ′ ′= −u s u (A.10) 

and 
 T( 2 )kk kk kkl s l′ ′ ′= − u u . (A.11) 

These relations may be used iteratively for k = 1, 2, … to calculate lcL′  line by line, with ′u  obtained 
from (A.10) with forward substitution. 

B.  SOLUTION OF THE VECTOR YULE-WALKER EQUATIONS 
In this appendix, we consider the solution to the system of equations (2.10). Our approach closely re-
sembles that given by [Mauricio 1997, eq. (6)] and in particular the system we solve is of the same 
order, namely 2 ( 1) 2r p r r− − . However, Mauricio does not provide a derivation of the system, our 
notation is significantly different from his, and lastly the system solved is not exactly the same (al-
though it is equivalent). Therefore, we provide an explicit derivation in this appendix.  
 Isolating pS  in the last equation of (2.10) and substituting into the first equation gives 

 T T T T T T T T T
0 1 1 1 1 0 1 1 1 1 0( ) ( )p p p p p p p p p pS A S A S A S A A S A A S A G A G− − − −− + + − + + + = +… …  (B.1) 

It is convenient to make use of the Kronecker product (A B⊗  is a block matrix with ( , )i j -block equal 
to ija B), the notation vec A for the vector consisting of all the columns of a matrix A placed one after 
another, and vech A for the columns of the lower triangle of A placed one after another. A useful prop-
erty here is Tvec( )ASB  = ( ) vecB A S⊗ . Let veci iS=s , veci iG=g , and denote the k-th column of iA 
with ika  and the k-th unit vector with ke . Because 0S  is symmetric, taking the transpose of (B.1) gives 
with this notation: 

 T
0 1 1 1 1 1 0( ) ( ) ( ) vec ( )p p p p p p p p pI A A A I A A A I A A G A I− −− ⊗ − ⊗ + ⊗ − − ⊗ + ⊗ = + ⊗s s s g…  (B.2) 

Furthermore, the equations with right hand side 1 1,..., pG G −  in (2.10) may be written as 

 

1 1 0 2 1 1 1

2 1 1 2 0 3 1 2 2

1 1 2 1 0 1 1

ˆ

ˆ ˆ

ˆ ˆ

p p

p p

p p p p p

A A A

A A A A

A A A

−

−

− − − −

− − − − =
− − − − − =

− − − − =

s s s s g

s s s s s g

s s s s g

ɶ ɶ…

ɶ ɶ…

⋮

ɶ…

 (B.3) 

where ˆiA  = iI A⊗  and iAɶ  is also an 2 2r r×  sparse block-matrix (which cannot be represented using ⊗): 
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 T T
1 1 1

T T
1

i i ir

i r ir r

A  =
 
 
  

a e a e

a e a e

ɶ ⋯

⋮ ⋮

⋯

. 

Together (B.2) and (B.3) provide 2pr  linear equations in the elements of 0 1,..., p−s s , but one can (and 
should) take into account that 0S  is symmetric and 0s  contains therefore duplicated elements. Let 0Ŝ  be 
a lower triangular matrix such that T

0 0 0
ˆ ˆS S S= +  (the diagonal elements of 0Ŝ  are halved compared with 

0S ) and let 0ŝ  = 0vechS  (the ( ( 1) 2r r + )-vector obtained by removing the duplicated elements from 0s ). 
Let also J be an 2 ( 1) 2r r r× +  matrix such that post-multiplication with it removes columns r + 1, 2r + 
1, 2r + 2, 3r + 1, 3r + 2, 3r + 3‚ …, 2 1r − . Then a term of the type 0

ˆ
iAs  in (B.3) may be rewritten: 

 T T
0 0 0 0 0 0 0

ˆ ˆ ˆ ˆ ˆ ˆ( ) vec( ) vec( ) ( )vec ( )i i i i i i i i iA I A A S I A S A S A A S A A J= ⊗ = = + = + = +s s sɶ ɶ , (B.4) 

For (B.2) it is not difficult to verify that 

 0( )p pA A⊗ s  = 0
ˆ( ) vec( )p p p pA A A A S⊗ + ɶ  = 0

ˆ ˆ( )p p p pA A A A J⊗ + sɶ , 

and furthermore that 0 0
ˆvec( )D S=s  where D is diagonal with iid  = 2 when i corresponds to a diagonal 

element in 0S  (i.e. i = 1, r + 2, 2r +3, …); otherwise iid  = 1. The matrix ˆ
p pA Aɶ  is a block-matrix with 

( , )i j -block equal to T
pj pia a . 

 Finally, the upper triangle of (B.2) should be removed. These modifications result in 
2 ( 1) 2r p r r− −  equations in the same number of unknowns, the elements of 0ŝ , 1s ,…, ps ; (B.2) be-

comes 

 ( ) ( )1T T T
0 01

ˆ ˆ( ) ( ) vec ( )
p

p p p p i p p i i p pi
J D A A A A J A I A A J G A I

−
−=

− ⊗ − − ⊗ + ⊗ = + ⊗∑s s gɶ  (B.5) 

and (B.3) is modified using (B.4). 

C.  TIME SERIES SIMULATION 
Simulation of VARMA time series has many applications e.g. to create test data for modelling meth-
ods, analyze such methods, and forecast with fitted models. Given values of tε , tx  for 1, ,t h= …  where 
h = max( , )p q  one may draw tε  from (0, )N Σ  for t = 1, 2,h h+ + … and apply (2.2) and (2.1) to obtain 
simulated values of tx  for t > h. If the starting values are not given, one may start with any values, for 
example zeros, and, after simulating, discard an initial segment to avoid spin-up effects. This is for 
example done in the routine arsim of [Schneider and Neumaier 2001]. For processes with short mem-
ory, this procedure works well and the discarded segment need not be very long, but for processes that 
are nearly non-stationary it may take a long time before they reach their long-term qualities, it is diffi-
cult to decide the required length of the initial segment, and the initial extra simulations may be costly. 
These drawbacks may be avoided by drawing values to start the simulation from the correct distribu-
tion. 
 Let ′x  = T T T

1( , , )hx x…  have mean ′µ  and covariance matrix S′, ′ε  = T T T
1( , , )hε ε…  have covariance ma-

trix ′Σ , and let C′ = cov( ′x , ′ε ). S′, ′Σ  and C′ are given with (2.7) and (2.8) and solution of the vector-
Yule-Walker equations (2.10) applying (3.5) if necessary, and ′µ  is the rh-vector T T T( , , )µ µ… . Starting 
values for ′x  may be drawn from N( , )′ ′Σµ , and starting values for ′ε  (that are needed if there are mov-
ing average terms) may be drawn from the conditional distribution of ′ ′ε | x , which is normal with ex-
pectation T 1( )C S−′ ′ ′−x µ  and covariance matrix T 1C S C−′ ′ ′Σ − . This conditional distribution may also 
be used to draw ′ε  when 1x ,..., hx  are given and 1ε ,…, hε  are unknown, for example when forecasting 
with a moving average model. This procedure has been implemented in [Jonasson 200 xxx]. 
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D.  DETERMINANT OF A LOW RANK UPDATE 
The economical evaluation of the determinant of the covariance matrix of the observations in the miss-
ing value case, described at the end of Section 3.1, is based on the following theorem. As we have 
been unable to locate a proof of this useful fact in the published literature, we include it here for com-
pleteness. An immediate consequence of the theorem is that the determinant of a low rank update of an 
arbitrary matrix M may often be evaluated efficiently using Tdet( )M UV+  = T 1det det( )M I V M U−+ , 
in this way complementing the Sherman-Morrison-Woodbury formula. 

Theorem. If A is m n× , B is n m×  and mI  and nI  are the m-th and n-th order identity matrices then 
det( )mI AB+  = det( )nI BA+ . 

Proof. Let C and D be m m×  and n n×  invertible matrices such that ( )0
0 0
kICAD=  and let 1 1D BC− −  = ( )1 2

3 4

B B
B B

 be a partitioning with 1B  a k k×  matrix. Then 

 

1 1 1 1 2

3 4

1 1 2

3 4

1 2 1
1

3

11 2

3 4

0
det( ) det

0 0

0
det( )det det

0 0

0
det det( ) det

0

0
det

0 0

k
m

k
m

k k
k

m k n k

k
n

B BI
I AB C C C D D C

B B

B BI
C I C

B B

I B B I B
I B

I B I

B B I
I D CC

B B

− − −

−

− −

−

   + = +       

   = +       

+ +   = = + =      

   = +      

1

det( ).n

D

I BA

− 
 
 

= +

 

The matrices C and D may, for example, be obtained from the singular value decomposition of A 
[Golub and Van Loan 1983]. 
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