
 1

Algorithm xxx: Exact VARMA likelihood and its gradient
for complete and incomplete data with Matlab

KRISTJAN JONASSON
University of Iceland

Matlab functions for the evaluation of the exact log-likelihood of VAR and VARMA time series models are presented (vector
autoregressive moving average). The functions accept incomplete data, and calculate analytical gradients, which may be used
in parameter estimation with numerical likelihood maximization. Allowance is made for possible savings when estimating
seasonal, structured or distributed lag models. Also provided is a function for creating simulated VARMA time series that
have an accurate distribution from term one (they are spin-up free). The functions are accompanied by a a simple example
driver, a program demonstrating their use for real parameter fitting, as well as a test suite for verifying their correctness and
aid further development.

Categories and Subject Descriptors: G.3 [Probability and Statistics]—Multivariate statistics; Statistical software; Stochastic
processes; Time series analysis; G.4 [Mathematical Software]—Algorithm design and analysis; Documentation; Efficiency;
Matlab; I.6 [Simulation and Modelling]: Miscellaneous; J.2 [Computer Applications]: Physical Sciences and Engineering;
J.4 [Computer Applications]: Social and Behavioural Sciences—Economics.

General Terms: Documentation, Verification, Algorithms.

Additional Key Words and Phrases: Exact likelihood function, missing values, incomplete data, ARMA, VARMA, vector
autoregressive moving average model.

1. INTRODUCTION
Algorithm xxx consists of Matlab functions to aid in the analysis of multivariate time series models.
There are three functions for evaluating exact log-likelihood, a function for simulating time series, a
suite of test functions for verifying the correctness of the other functions and a program demonstrating
actual parameter fitting. A simple example driver is also included. The three log-likelihood evaluation
functions are varma_llc for VARMA (vector autoregressive moving average) models with com-
plete data, varma_llm for VARMA models with missing values and var_ll for VAR models with
or without missing values. All three functions can optionally calculate the gradient of the log-
likelihood, estimates of missing values, and estimates of associated residual or shock series.
 The simulation function is named varma_sim , and it may be used to generate a single VARMA or
VAR series, or several series at a time sharing the same parameters. One of the novelties of
varma_sim is that the initial values are drawn from the appropriate distribution, so that throwing
away the first part of the series to avoid spin-up effects is not needed.
 The algorithm is an implementation of the methods described in the companion paper [Jonasson and
Ferrando 200 xxx] and the programs (including variable names) follow very closely the notation used
there. The companion paper also describes numerical experiments carried out with the Matlab func-
tions.
 The test suite implements unit tests for all functions and sub-functions, as far as is practical for a
numerical package. The purpose is to ascertain the correctness of the coded algorithms, not to provide
users with examples of how to use the package, which is provided for by the demonstration programs.
Unit-testing is one of the ideas of extreme programming: write tests for everything, preferably before
writing the actual algorithms being implemented; see for example [George and Williams 2004].
 Previously published programs for VARMA and VAR likelihood evaluation are the Fortran pro-
grams of Shea [1989] and Mauricio [1997] and the Matlab programs of Schneider and Neumaier

Author’s address: Kristjan Jonasson, Department of Computer Science, Faculty of Engineering, University of
Iceland, Hjardarhaga 4, 107 Reykjavik, Iceland; email: jonasson@hi.is.

 2

[2001]. Attention should also be drawn to 4E by J. Terceiro and others. It is a collection of Matlab
functions for state-space estimation of econometric models. 4E is distributed under the GNU license
and available on the web along with a user manual: www.ucm.es/info/icae/e4. The software and man-
ual have not been published, but there are some related publications listed on this web page, including
[Terceiro 1990].

2. FUNCTION VALUE AND GRADIENT OF LOG-LIKELIHOOD

There are three functions for likelihood evaluation supplied: var_ll implements the savings described
in section 3.3 of the companion paper for both the complete data and missing value cases, varma_llc
implements the method of section 2.2 and varma_llm the method of section 3.1 in the companion pa-
per. The functions can also find gradients, residual estimates and missing value estimates, c.f. sections
3.2 and 4 of the companion paper. When observations are missing, the functions accept the mean-
vector as a proper model parameter (c.f. the introduction to the companion paper), but the complete
data calls assume a zero-mean model. To fit a non-zero-mean time-series, the mean-vector of the ob-
servations may be subtracted from each tx at the outset. Help for all three functions is obtained by giv-
ing the command help function at the Matlab prompt (e.g. help var_ll).

2.1 VAR models
A zero-mean VAR model describing a time series of values r

t ∈x ℝ , t = 1,…, n, is given by:

1

p

t j t j t
j

A −
=

= +∑x x ε (1)

where the jA ’s are r × r parameter matrices and the tε ’s are r-variate (,)N Σ0 uncorrelated in time. To
evaluate the exact log-likelihood function associated with (1) when no observations are missing use
the Matlab call:
 [ll,ok] = var_ll(X,A,Sig)

where A is an r × rp matrix containing 1[]pA A… , Sig is r × r and symmetric containing Σ, and X is
an r × n matrix with tx in its t-th column. Let nθθ ∈R with 2 (1) 2n pr r rθ = + + denote the vector of
parameters, i.e. the elements of 1A ,…, pA (column by column) and the lower triangle of Σ. If they de-
scribe a stationary model, ll will return a scalar with the value of the log-likelihood function ()l θ and
the logical variable ok will return true, but if the model is non-stationary ll will be 0 and ok will be
false. To calculate the 1 nθ× gradient ()l θ′ in ll or the (maximum likelihood) estimate of the residuals
(or shocks) tε in res use the calls:
 [ll,ok,lld] = var_ll(X,A,Sig)
 [ll,ok,res] = var_ll(X,A,Sig,'res') .

A non-zero-mean VAR model may be written:

1

()
p

t j t j t
j

A −
=

− = − +∑x µ x µ ε (2)

If X, A and Sig are as before, mu contains µ and miss is an r × n logical matrix, which is true in loca-
tions of missing values, the Matlab call:
 [ll,ok] = var_ll(X,A,Sig,mu,miss)

will return the log-likelihood value in ll (or zero ll and false ok if the model is non-stationary). To
calculate the gradient, residuals, or residuals and maximum likelihood estimates of missing values use
the calls
 [ll,ok,lld] = var_ll(X,A,Sig,mu,miss)
 [ll,ok,res] = var_ll(X,A,Sig,mu,miss,'res')
 [ll,ok,res,xm] = var_ll(X,A,Sig,mu,miss,'res_miss') .

(µ is placed at the end of θ and nθ is now 2 (3) 2pr r r+ +).

 3

2.2 Complete data VARMA models

A zero-mean VARMA model for r
t ∈x ℝ , t = 1,…, n, is given by

1

p

t j t j t
j

A −
=

= +∑x x y (3)

where 1

q

t t j t jj
B −== + Σy ε ε , the jA ’s and the jB ’s are r × r matrices, and the tε ’s are r-variate (,)N Σ0

uncorrelated in time. If X, A and Sig are as in section 2.1 and B contains 1[]qB B… , the Matlab call
 [ll,ok] = varma_llc(X,A,B,Sig)

will return the likelihood function value in ll and ok will be true unless the model is non-stationary,
then ok will be false. The calls
 [ll,ok,lld] = varma_llc(X,A,Sig)
 [ll,ok,res] = varma_llc(X,A,Sig,'res')

return in addition the 1 × 2() (1) 2p q r r r+ + + gradient ()l θ′ in lld or the residual estimates in res ,
where θ consists of the parameters: the columns of the jA ’s followed by the columns of the jB ’s fol-
lowed by the columns of the lower triangle of Σ.

2.3 Missing value VARMA models

Let µ be the expected value of r
t ∈x ℝ and let other model parameters as well as ty and tε be as in sec-

tion 2.2. A non-zero-mean VARMA model for tx , t = 1,…, n, is given by

1

()
p

t j t j t
j

A −
=

− = − +∑x µ x µ y (4)

If X, A, B and Sig are as in section 2.2, mu contains µ and miss is an r × n logical matrix which is
true in locations of missing values then the Matlab call
 [ll,ok] = varma_llm(X,A,B,Sig,mu,miss)

will return the likelihood function value in ll and ok will be true unless the model is non-stationary.
The calls
 [ll,ok,lld] = varma_llm(X,A,B,Sig,mu,miss)
 [ll,ok,res] = varma_llm(X,A,B,Sig,mu,miss,'res')
 [ll,ok,res,xm] = varma_llm(X,A,B,Sig,mu,miss,'res_ miss')

return in addition the 1 × 2() (3) 2p q r r r+ + + gradient ()l θ′ in lld , residual estimates in res , and the
last one returns maximum likelihood estimates of missing values in xm, where µ has been appended to
the θ of section 2.2.

2.4 Model parameters given by a function

Let ()gθ φ= where
nφφ ∈R and let gJ be the n nθ φ× Jacobian of g as in section 4.3 of the companion

paper. To realize the savings discussed there, use one of the calls
 [ll,ok,lld] = var_ll(X,A,Sig,J)
 [ll,ok,lld] = var_ll(X,A,Sig,mu,miss,J)
 [ll,ok,lld] = varma_llc(X,A,Sig,J)
 [ll,ok,lld] = varma_llm(X,A,B,Sig,mu,miss,J)

where J contains gJ . A partial variable change is also possible; c.f. the help text of the functions. To
take an example, assume a distributed lags model,

3

1
t j t j t

j

C b −
=

= +∑x x ε

 4

where the jb ’s are fixed constants and the model parameters consist of the r × r matrix C together with
the shock covariance matrix Σ. To evaluate the likelihood and its gradient efficiently the following
Matlab code may be used:
 A = [b(1)*C b(2)*C b(3)*C];
 I = eye(3*r);
 JC = [b(1)*I; b(2)*I; b(3)*I];
 JSig = eye(r*(r+1)/2);
 J = blkdiag(JC, JSig);
 [ll,ok,lld] = var_ll(X,A,Sig,J);

3. SIMULATION
The Matlab function varma_sim will generate a random VARMA time series for a specified model.
If A, B and Sig are as above, then the calls
 X = varma_sim(A,[],Sig,n)
 X = varma_sim(A,B,Sig,n)

generate a single zero-mean n-term series modelled by (1) or (3) in the r × n matrix X. The calls
 X = varma_sim(A,[],Sig,n,[],M)
 X = varma_sim(A,B,Sig,n,[],M)

will create M such series. When r = 1 X will be n × M and when r > 1 it will be r × n × M. To generate
non-zero-mean series as modelled by (2) or (4) use the calls
 X = varma_sim(A,B,Sig,n,mu)
 X = varma_sim(A,B,Sig,n,mu,M) ,

possibly with empty B. The series are started using the procedure described in the second paragraph of
Appendix D in the companion paper, and when moving average terms are present, the initial shocks
are also drawn as described there.
 It is also possible to specify terms to start the series using
 X = varma_sim(A,B,Sig,n,mu,M,X0)

where X0 has r rows and at least max(,)p q columns. All the generated series will begin with the last
max(,)p q columns of X0 and the corresponding shocks are drawn as explained above. As before, A, B
and/or mu may be empty.
 The shocks used for the generation may be obtained by specifying a second return parameter:
[X,eps] = varma_sim(…) . The dimension of eps will be same as that of X.

4. DEMONSTRATION

4.1 Demonstration of likelihood calculation

 A simple example driver, example_driver.m , illustrates the use of the three log-likelihood
evaluating functions as well as simulation. The driver calculates the log-likelihood of two models, a
VAR(1) model and a VARMA(1,1) model, both of them with r = 2 and n = 12. It also produces two
simulated series of length 5.

4.2 Demonstration of parameter estimation

 A suite of programs demonstrating the use of the package for actual model fitting has been gathered
in one file, demorun.m . There are two subfunctions for two types of demonstration:

a) VAR(p) and VARMA(p, q) modelling with simulated data (obtained with varma_sim), both
with and without missing values. These are carried out by the subfunction demov.

b) Modelling of real data using two constrained models is done by the subfunction demod. The
data are annual mean temperatures at 3 Icelandic meteorological stations 1799−2006, cf.

 5

[Hanna, Jonsson and Box 2004]. The two models are a combined lower triangular and diago-
nal VAR-model:

 1 1 2 2 3() () ()t t t t tL D D− − −− = − + − + − +x µ x µ x µ x µ ε (5)

where L is lower triangular and 1D and 2D are diagonal, and a distributed lags VAR-model:

 1 2() 0.5 ()t t t tA A− −− = − + − +x µ x µ x µ ε (6)

where A is a general matrix. In both cases the tε ’s are 3-variate (,)N Σ0 .

The parameters are estimated by maximizing the log-likelihood function using the BFGS-method.
There are two choices for an optimization routine: fminunc from Matlab’s optimization toolbox, and
the function ucminf described in [Nielsen 2000] and available freely in http://imm.dtu.dk/~hbn/imm-
optibox. Before running the demonstrations, one of these must be installed.
 Issuing one of the commands

 demorun('fminunc')
 demorun('ucminf')

fits six models, four of type a) and the two models (5) and (6). To make the demonstration run quickly,
small models have been chosen. For a) these are a VAR(2) model with r = 3, n = 400 and complete
data, a VAR(2) model with r = 3, n = 200 and 5% of the values missing, and two VARMA(1, 1) mod-
els with r = 2, n = 200, one with complete data and the other with 5% missing. For (5) and (6) the data
before 1860 is omitted, also to enable a quick run. All these sizes are easily changed by editing the
function. A data file with the temperature series, as well as pdf files with the output of de-
morun('ucminf') and the source code of demorun.m accompany the program package.

5. TESTING
 The programs in the test suite are of two types: primary tests, for testing the four main functions
discussed above, and secondary tests, that test individual components (subfunctions, helper functions)
of the main functions. To verify the correctness of the main functions it is only necessary to examine
and run the primary tests. The secondary tests were written as an aid in developing the program suite.
They are included for completeness, and as an aid for possible future development and changes. The
primary tests are:
 test_varma_llc
 test_varma_llc_deriv
 test_var_ll
 test_var_ll_jac
 test_varma_llm
 test_varma_jac
 test_varma_llm_deriv
 test_varma_sim

The correctness of varma_llc is checked against direct likelihood evaluation with equation (2.3) of
the companion paper. The function varma_llm is checked against varma_llc for complete data,
and against direct evaluation with equation (2.4) of the companion paper for missing values, and
var_ll is simply compared with varma_llm . Gradient calculation and the Jacobian feature (see
section 2.4) are checked by comparing with numerical differentiation. All tests are carried out for sev-
eral different test cases with a range of values of p, q and r. Finally, the testing of varma_sim is ac-
complished by comparing data expectations and covariances of generated series with theoretical ones.
All the primary tests may be run via the Matlab script TEST_PRIMARY, and with TEST_ALL the sec-
ondary tests are also run.
 A comparison of varma_llc with calcuations from Algorithm AS311 of Mauricio [1997] was also
carried out and an agreement to about 15 decimal digits was observed. The programs used for this
comparison are included, together with their output.

 6

REFERENCES
GEORGE, B. AND WILLIAMS , L. 2004. A structured experiment of test-driven development. Information And Software Tech-

nology 46, 5, 337–342.
HANNA, E., JONSSON, T. AND BOX, J. E. 2004. An analysis of Icelandic climate since the nineteenth century. International

Journal of Climatology 24, 10, 1193-1210.
JONASSON, K. AND FERRANDO, S. E. 200 xxx, Evaluating exact VARMA likelihood and its gradient when data are incomplete.

ACM Trans. Math Softw. xxx, xxx, xxx–xxx.
MAURICIO, J. A. 1997. Algorithm AS 311: The exact likelihood function of a vector autoregressive moving average model.

Appl. Statist.46, 1, 157–171.
NIELSEN, H. B. 2000. UCMINF - An algorithm for unconstrained, nonlinear optimization. Report IMM-REP-2000-19, De-

partment of Mathematical Modelling, Technical University of Denmark.
SCHNEIDER, T. AND NEUMAIER, A. 2001. Algorithm 808: ARfit - A Matlab package for the estimation of parameters and ei-

genmodes of multivariate autoregressive models. ACM Trans. Math. Softw. 27, 1, 58–65.
SHEA, B. L. 1989. Algorithm AS 242: The exact likelihood of a vector autoregressive moving average model. Appl. Statist.

38, 1, 161–204.
TERCEIRO, J. 1990. Estimation of Dynamic Econometric Models with Errors in Variables. Springer-Verlag, Berlin.

