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Matlab functions for the evaluation of the exag-lixelihood of VAR and VARMA time series models ameesented (vector
autoregressive moving average). The functions adnepmplete data, and calculate analytical gradiemhich may be used
in parameter estimation with numerical likelihoodximization. Allowance is made for possible savimgsen estimating
seasonal, structured or distributed lag modelso Alovided is a function for creating simulated VARNIme series that
have an accurate distribution from term one (theysgin-up free). The functions are accompanied by a a sirepénple

driver, a program demonstrating their use for peahmeter fitting, as well as a test suite forfyarg their correctness and
aid further development.

Categories and Subject Descriptors: GBpability and Statistics—Multivariate statistics; Statistical software; Stochastic
processes; Time series analysis, G.4 Mathematical Software]—Algorithm design and analysis; Documentation; Efficiency;
Matlab; 1.6 [Simulation and Modelling]: Miscellaneous; J.ZJomputer Applications]: Physical Sciences and Engineering;
J.4 [Computer Applications]: Social and Behavioural ScienceEesnomics.

General Terms: Documentation, Verification, Algbnits.

Additional Key Words and Phrases: Exact likelihdadction, missing values, incomplete data, ARMA, VARMvector
autoregressive moving average model.

1. INTRODUCTION

Algorithm xxx consists of Matlab functions to aid the analysis of multivariate time series models.
There are three functions for evaluating exactlikgihood, a function for simulating time series,
suite of test functions for verifying the corredaf the other functions and a program demonstyati
actual parameter fitting. A simple example driveriso included. The three log-likelihood evaluatio
functions arevarma_llc ~ for VARMA (vector autoregressive moving average)dels with com-
plete datayarma_llm for VARMA models with missing values anar_ Il for VAR models with

or without missing values. All three functions captionally calculate the gradient of the log-
likelihood, estimates of missing values, and edtsaf associated residual or shock series.

The simulation function is namedrma_sim , and it may be used to generate a single VARMA or
VAR series, or several series at a time sharing shme parameters. One of the novelties of
varma_sim is that the initial values are drawn from the ampiate distribution, so that throwing
away the first part of the series to avoid spiretfpcts is not needed.

The algorithm is an implementation of the methdescribed in the companion paper [Jonasson and
Ferrando 200 xxx] and the programs (including J@eéarames) follow very closely the notation used
there. The companion paper also describes humexigariments carried out with the Matlab func-
tions.

The test suite implementsit tests for all functions and sub-functions, as far apnactical for a
numerical package. The purpose is to ascertaindhrectness of the coded algorithms, not to provide
users with examples of how to use the package hnkiprovided for by the demonstration programs.
Unit-testing is one of the ideas eftreme programming: write tests for everything, preferably before
writing the actual algorithms being implemented: && example [George and Williams 2004].

Previously published programs for VARMA and VARdIihood evaluation are the Fortran pro-
grams of Shea [1989] and Mauricio [1997] and thetllddaprograms of Schneider and Neumaier
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[2001]. Attention should also be drawn ES by J. Terceiro and others. It is a collection odithb
functions for state-space estimation of econometiiciels.E* is distributed under the GNU license
and available on the web along with a user mamvaaly.ucm.es/info/icae/e4. The software and man-
ual have not been published, but there are soratedepublications listed on this web page, inclgdin
[Terceiro 1990Q].

2. FUNCTION VALUE AND GRADIENT OF LOG-LIKELIHOOD

There are three functions for likelihood evaluatsupplied:var_Il implements the savings described
in section 3.3 of the companion paper for bothdbmplete data and missing value casasya llc
implements the method of section 2.2 aadma_[Im the method of section 3.1 in the companion pa-
per. The functions can also find gradients, redidaimates and missing value estimates, c.f. @&t
3.2 and 4 of the companion paper. When observapaamissing, the functions accept the mean-
vector as a proper model parameter (c.f. the inctdn to the companion paper), but the complete
data calls assume a zero-mean model. To fit a ropHnean time-series, the mean-vector of the ob-
servations may be subtracted from eacht the outset. Help for all three functions isaatéd by giv-

ing the commandelp function at the Matlab prompt (e.gelp var_ll ).

2.1 VAR models
A zero-mean VAR model describing a time seriesadfiesx, OR", t = 1,...,n, is given by:

P
X, =D AX_ tg 1)
=1

where theA’s arer x r parameter matrices and thés arer-variate N(0,Z) uncorrelated in time. To
evaluate the exact log-likelihood function assadatvith (1) when no observations are missing use
the Matlab call:

[Il,ok] = var_II(X,A,Sig)

whereA is anr x rp matrix containindA ... A], Sig isr xr and symmetric containing, andX is
anr x n matrix with x, in its t-th column. Letd JR™ with n, = pr® +r (r +1)/2 denote the vector of
parameters, i.e. the elementsAf..., A (column by column) and the lower triangleXfif they de-
scribe a stationary modéll, will return a scalar with the value of the logdikhood functionl () and
the logical variablek will return true, but if the model is non-statiopdl  will be 0 andok will be
false. To calculate thixn, gradient’(6) inll  or the (maximum likelihood) estimate of the residu
(or shocksk, inres use the calls:

[II,0k,lIld] = var_lI(X,A,Sig)

[I,ok,res] = var_II(X,A,Sig,'res")

A non-zero-mean VAR model may be written:

X -B=Y A -H) e, @

If X, AandSig are as beforenucontaingn andmiss is anr x n logical matrix, which is true in loca-
tions of missing values, the Matlab call:

[I,ok] = var_lI(X,A,Sig,mu,miss)

will return the log-likelihood value il (or zeroll and falseok if the model is non-stationary). To
calculate the gradient, residuals, or residualsraadimum likelihood estimates of missing values use
the calls

[I,ok,lId] = var_II(X,A,Sig,mu,miss)

[Il,ok,res] = var_IlI(X,A,Sig,mu,miss,'res’)

[I,ok,res,xm] = var_II(X,A,Sig,mu,miss,'res_miss' ).

n is placed at the end 6fandn, is now pr? +r (r +3)/2).
g



2.2 Complete data VARMA models
A zero-mean VARMA model fox, OR", t = 1,...,n, is given by

p
X =D AX_ +Y, 3)
=

wherey, =g, +Z?:lBjst_j, the Ags and thij’s arer x r matrices, and the’s arer-variate N(0,Z)
uncorrelated in time. K, AandSig are as in section 2.1 aBdcontaindB, ... Bq], the Matlab call
[Il,ok] = varma_llc(X,A,B,Sig)

will return the likelihood function value ith andok will be true unless the model is non-stationary,
thenok will be false. The calls

[II,ok,lid] = varma_llc(X,A,Sig)

[Il,ok,res] = varma_llc(X,A,Sig,'res")
return in addition the 1 %p+q)r®+r(r +1)/2 gradientl’(8) in lld or the residual estimates iies ,
where6 consists of the parameters: the columnthefA’s followed by the columns of thB,’s fol-
lowed by the columns of the lower triangle3bf

2.3 Missing value VARMA models

Let p be the expected value fJR" and let other model parameters as wel aande, be as in sec-
tion 2.2. A non-zero-mean VARMA model faf, t = 1,...,n, is given by

Xt_pziAj(Xt—j_u)-l-yt (4)

If X, A, B andSig are as in section 2.?ucontainsp andmiss is anr x n logical matrix which is
true in locations of missing values then the Matalb
[I,ok] = varma_llm(X,A,B,Sig,mu,miss)

will return the likelihood function value ith andok will be true unless the model is non-stationary.
The calls

[I,ok,lld] = varma_lim(X,A,B,Sig,mu,miss)

[Il,ok,res] = varma_lim(X,A,B,Sig,mu,miss,'res")

[I,ok,res,xm] = varma_llm(X,A,B,Sig,mu,miss,'res_ miss")
return in addition the 1 ¢p+q)r® +r (r +3)/2 gradientl’(d) in lld , residual estimates ies , and the
last one returns maximum likelihood estimates afsinig values imm, wherep has been appended to
the 8 of section 2.2.

2.4 Model parameters given by a function

Let 8=g(®) WheregoDRn‘” and letJ, be then, xn, Jacobian ofj as in section 4.3 of the companion
paper. To realize the savings discussed thereggnesef the calls

[II,0k,lld] = var_lI(X,A,Sig,J)

[I,ok,lld] = var_II(X,A,Sig,mu,miss,J)

[I,ok,lid] = varma_llc(X,A,Sig,J)

[I,ok,lld] = varma_lim(X,A,B,Sig,mu,miss,J)
whereJ containsJ, . A partial variable change is also possible; thé. help text of the functions. To
take an example, assume a distributed lags model,

3
X, =Cijxt_j +g,
=1



where theb,’s are fixed constants and the model parametersistoof ther x r matrix C together with
the shock covariance matr¥ To evaluate the likelihood and its gradient édfintly the following
Matlab code may be used:

A = [b(1)*C b(2)*C b(3)*C];

I = eye(3*r);

JC = [b(1)*I; b(2)*1; b(3)*I];

JSig = eye(r*(r+1)/2);

J = blkdiag(JC, JSig);

[I,ok,lId] = var_II(X,A,Sig,J);

3. SIMULATION
The Matlab functiorvarma_sim will generate a random VARMA time series for adfied model.
If A, BandSig are as above, then the calls

X =varma_sim(A,[],Sig,n)

X =varma_sim(A,B,Sig,n)
generate a single zero-meaterm series modelled by (1) or (3) in th& n matrix X. The calls

X =varma_sim(A,[],Sig,n,[],M)

X =varma_sim(A,B,Sig,n,[],M)
will createMsuch series. Whan= 1 X will be n x M and wherr > 1 it will ber x n x M. To generate
non-zero-mean series as modelled by (2) or (4}hesealls

X =varma_sim(A,B,Sig,n,mu)

X =varma_sim(A,B,Sig,n,mu,M)
possibly with emptyB. The series are started using the procedure deslcin the second paragraph of
Appendix D in the companion paper, and when mowngrage terms are present, the initial shocks
are also drawn as described there.

It is also possible to specify terms to startgbges using

X =varma_sim(A,B,Sig,n,mu,M,X0)
whereX0 hasr rows and at leashax(p ,g. columns. All the generated series will begin vitike last
max(p ,q; columns ofx0 and the corresponding shocks are drawn as exglaibeve. As beforey, B
and/ormumay be empty.

The shocks used for the generation may be obtdiyedpecifying a second return parameter:

[X,eps] = varma_sim( ...) . The dimension ofps will be same as that &f

4. DEMONSTRATION

4.1 Demonstration of likelihood calculation

A simple example driverexample_driver.m , illustrates the use of the three log-likelihood
evaluating functions as well as simulation. Theva@ricalculates the log-likelihood of two models, a
VAR(1) model and a VARMA(1,1) model, both of thenithwr = 2 andn = 12. It also produces two
simulated series of length 5.

4.2 Demonstration of parameter estimation

A suite of programs demonstrating the use of tiekage for actual model fitting has been gathered
in one file,demorun.m . There are two subfunctions for two types of desti@tion:

a) VAR(p) and VARMA(p, g) modelling with simulated data (obtained witlrma_sim ), both
with and without missing values. These are carigicby the subfunctiodemov.

b) Modelling of real data using two constrained mleds done by the subfuncticlemod. The
data are annual mean temperatures at 3 Icelandieonoéogical stations 1799-2006, cf.



[Hanna, Jonsson and Box 2004]. The two models amrdined lower triangular and diago-
nal VAR-model:

X, ~m=L(Xy —1) + Di(X, — 1) + Dy(X_ 5~ p) +e (5)
whereL is lower triangular an@®, andD, are diagonal, and a distributed lags VAR-model:
X, —pn=A(X_, —n) +0.5AK,_, —p)+eg, (6)

whereA is a general matrix. In both cases ¢{is are 3variateN(0, ).

The parameters are estimated by maximizing theikedjhood function using the BFGS-method.
There are two choices for an optimization routingnunc from Matlab’s optimization toolbox, and
the functionucminf described in [Nielsen 2000] and available frealyitp://imm.dtu.dk/~hbn/imm-
optibox. Before running the demonstrations, onthe$e must be installed.

Issuing one of the commands

demorun(‘fminunc')
demorun('ucminf’)

fits six models, four of type a) and the two mod@&lsand (6). To make the demonstration run quickly
small models have been chosen. For a) these afeR{2y model withr = 3,n = 400 and complete
data, a VAR(2) model with = 3,n = 200 and 5% of the values missing, and two VARMAY) mod-

els withr = 2,n = 200, one with complete data and the other wdthrbissing. For (5) and (6) the data
before 1860 is omitted, also to enable a quick Alhthese sizes are easily changed by editing the
function. A data file with the temperature series, well as pdf files with the output afe-
morun(‘ucminf’) and the source code démorun.m accompany the program package.

5. TESTING

The programs in the test suite are of two typeisnary tests, for testing the four main functions
discussed above, and secondary tests, that tegidual components (subfunctions, helper functions)
of the main functions. To verify the correctnessh&f main functions it is only necessary to examine
and run the primary tests. The secondary tests wetien as an aid in developing the program suite.
They are included for completeness, and as ancaigdssible future development and changes. The
primary tests are:

test_varma_llc
test_varma_llc_deriv
test_var_ll
test_var_ll_jac
test_varma_llm
test_varma_jac
test_varma_llm_deriv
test_varma_sim

The correctness afarma_llc  is checked against direct likelihood evaluatiothvaquation (2.3) of
the companion paper. The functivsarma_llm is checked againstarma_llc  for complete data,
and against direct evaluation with equation (2.#Yh@ companion paper for missing values, and
var_Il is simply compared witlvarma_lim . Gradient calculation and the Jacobian feature (se
section 2.4) are checked by comparing with numedifferentiation. All tests are carried out forvse
eral different test cases with a range of valugs, gfandr. Finally, the testing ofarma_sim is ac-
complished by comparing data expectations and @wags of generated series with theoretical ones.
All the primary tests may be run via the Matlab@cfEST_PRIMARY and withTEST_ALL the sec-
ondary tests are also run.

A comparison offarma_llc  with calcuations fronmflgorithm AS311 of Mauricio [1997] was also
carried out and an agreement to about 15 decingitisdivas observed. The programs used for this
comparison are included, together with their output
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