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L2WPMA is a package of Fortran 77 subroutines that calculates a weighted least squares piecewise

monotonic approximation to univariate data contaminated by random errors [3]. This report
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1. PROBLEM DEFINITION AND OUTLINE OF THE METHOD

L2WPMA is a package of Fortran subroutines that is presented by [3]. It calculates
a weighted least squares piecewise monotonic approximation to n univariate data
contaminated by random errors, which is de…ned as follows. If a real function f (x)
is measured at the abscissae x1 < x2 < ¢ ¢ ¢ < xn and the measurements {Ái

»= f (xi):
i = 1; 2; : : : ;n} contain large uncorrelated random errors, then L2WPMA can be
used to calculate values for {yi : i = 1;2; : : : ; n} that minimize the weighted sum
of the squares of the errors

©(y) =
nX

i=1

wi(Ái ¡ yi)
2 (1)

so that the sequence {yi+1 ¡ yi : i = 1; 2; : : : ; n ¡1} has at most k ¡1 sign changes,
where k is a given positive integer smaller than n. Without loss of generality, we
assume that the …rst nonzero di¤erence yi+1 ¡ yi is positive. So the constraints are
[4]

ytj
· ytj+1 · ¢ ¢ ¢ · ytj+1

; j even
ytj

¸ ytj+1 ¸ ¢ ¢ ¢ ¸ ytj+1
; j odd

¾
, (2)
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2 ¢ Ioannis C. Demetriou

where {tj : j = 1; 2; :::; k ¡ 1} are integers that satisfy the conditions

1 = t0 · t1 · ¢ ¢ ¢ · tk = n; (3)

and where the numbers (weights) wi satisfy the inequalities wi > 0, i = 1; 2; : : : ; n.
While k is provided by the user, {tj : j = 1; 2; : : : ; k ¡ 1} are variables of the
minimization calculation together with {yi : i = 1; 2; : : : ; n}. It is convenient to the
subsequent presentation to consider {Ái : i = 1; 2; : : : ; n} and {yi : i = 1;2; : : : ; n}
as the components of vectors Á and y in Rn respectively.

L2WPMA consists of …ve Fortran subroutines for the calculation of an optimal
…t to Á. The user may specify whether the …rst monotonic section is increasing
or decreasing. The software package allows a monotonic section to degenerate to a
single component. The underlying method is described by [2] except that L2WPMA
allows the data have positive weights and at the end of the calculation it provides
a spline representation of the …t and the corresponding Lagrange multipliers. The
entry point of our package, which also names the software package, is subroutine
L2WPMA. Section 2 speci…es the interface of the software with the calling program.
Section 3 presents the purpose of each subroutine. Section 4 presents output of a
simple example. Section 5 gives information for further documentation.

In order to explain the purpose of the arguments of the user interface, we outline
below the method of calculation, but for details one may consult [2]. For positive
integers p and q , we let

®(p; q) = min
yp·yp+1·¢¢¢·yq

qX

i=p

wi(Ái ¡ yi)
2; 1 · p · q · n, (4)

¯(p; q) = min
yp¸yp+1¸¢¢¢¸yq

qX

i=p

wi(Ái ¡ yi)
2; 1 · p · q · n, (5)

and for any integers m 2 [1; k] and t 2 [1; n] we let

G(m; t) = { min
z2Rt

tX

i=1

wi(Ái ¡ zi)
2; z has m monotonic sections}.

In order to calculate G(k; n), which is the least value of (1), we begin the calculation
from G(1; t) = ®(1; t), for t = 1; 2; : : : ; n, and proceed by applying the dynamic
programming formulae

G(m; t) =

8
<
:

min
s2[maxf#(m);¿ (m¡2;tg;t]\L

[G(m ¡ 1; s) + ®(s; t)], m odd,

min
s2[maxf#(m);¿ (m¡2;tg;t]\U

[G(m ¡ 1; s) + ¯(s;t)], m even, (6)

for all m 2 [2;k ], while t increments in L or U , where: L and U are the sets
of the indices of local minima and local maxima of the data respectively (for the
de…nitions of L and U see [4]); ¿(m; t) is the value of s that minimizes expression
(6), for each value of m and t; and, #(m) is the greatest value of f¿(m; `) : ` < tg
that has already been calculated while ¿(m; `) is chosen as small as possible. At
the end of the process m = k occurs, the value ¿(k; n) is the integer tk¡1 and we
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User guide for Algorithm XXX: L2WPMA ¢ 3

obtain the sequence of optimal values ftj : j = 1; 2; : : : ; k ¡ 1g by the backward
formula

tk = n; tm¡1 = ¿(m; tm), m = k; k ¡ 1; : : : ; 2: (7)

Then, the components of an optimal …t are monotonic increasing on [1; t1] and on
[tj ; tj+1] for even j in [1; k ¡ 1] and decreasing on [tj ; tj+1] for odd j in [1; k ¡ 1].
In Section 4 a numerical example demonstrates the derivation of the tis for k > 2,
by means of (7).

L2WPMA provides also the Lagrange multipliers f¸i : i = 2; 3; : : : ; ng (although
they are not required for obtaining the optimal …t). They are de…ned as follows.
Having obtained the optimal sequence of integers fti : i = 2; 3; : : : ; k ¡ 1g and the
associated optimal …t y, the Karush-Kuhn-Tucker conditions for the problem that
minimizes (1) subject to the constraints (2) state that the equation

grad©(y) =
X

i2A

¸i(e
i¡1 ¡ ei) (8)

holds, where A is the subset A = fi : yi¡1 ¡ yi = 0g of the constraint indices
f2; 3; : : : ; ng, ei is the ith coordinate vector in Rn and grad©(y) is the gradient of
©(y); and, f¸i : i 2 Ag are nonnegative, when i 2 [2; t1]\ A and i 2 [tj +1; tj+1]\A
for j even, and nonpositive, when i 2 [tj +1; tj+1] \ A for j odd. Further, we de…ne
¸i = 0 for all integers i in [2; n]nA, so that ¸ is a (n ¡ 1)-vector.

Finally, we may express the optimal …t y in the form of …rst-order B-splines
(see [1: p.89]). To be speci…c, we represent y by a triple (·; !; ³). Here · is a
positive integer and ! and ³ are vectors in R·, where the components of ! are
positive integers whose sum is n. This triple denotes the vector y = y(·; !; ³) 2 Rn

that has !1 components equal to ³1, !2 components equal to ³2 and so on up
to !· components equal to ³· . Hence we de…ne the knots »1 = x1, »2 = x!1+1,
»3 = x!1+!2+1 and so on up to »· = x!1+!2+¢ ¢¢+!·¡1+1, we let ³1 = y1, ³2 = y!1+1,
³3 = y!1+!2+1 and so on up to ³· = y!1+!2+¢¢ ¢+!·¡1+1, and we obtain the spline
representation s(x) of vector y by

s(x) =

·X

j=1

³ jBj (x); x1 · x · xn; (9)

where Bj (x) = 1, if »j · x < »j+1, and Bj (x) = 0 otherwise. L2WPMA at the end
of the calculation provides the data indices of the knots, so the user may obtain
the sequences {»i : i = 1; 2; : : : ;·} and {³ i : i = 1; 2; : : : ; ·} (see argument IAKN
of subroutine L2WPMA in Section 2).

2. USER INTERFACE

The main subroutine that provides interface to the user is declared by

SUBROUTINE L2WPMA(I1, N, X, F, WF, MODEWF, KSECTN, IORDER,
+Y, WY, NK, IAKN, NACT, IACT, PAR, ITAU, ITHETA, MODE, SS, G, RG,
+LOWER, IUPPER, INDX, FT, WFT, FTNEG, WY1, Z, WZ, IW, IAKNW)

Subroutine L2WPMA implements Algorithm 1 of [2] with certain enhancements
that provide an optimal …t to Á. The calculation starts by calling subroutine
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4 ¢ Ioannis C. Demetriou

TRIVIA (which is referred to in Section 3) in order to check on certain trivial cases
that may cause termination of the smoothing process and ends by providing the
knots of the spline representation (9) of the optimal …t and the associated Lagrange
multipliers.

The purpose of each argument of L2WPMA follows. We allow the range of the
data indices be [I1,N] instead of [1; n] and, henceforth, we shall refer to the formulae
of Section 1 by following this convention. All subroutines referred to in the following
list are explained in Section 3.

INPUT (they must be set by the user)
I1 Integer variable, lower data index, I1=1.
N Integer variable, upper data index, corresponds to n, N¸I1.
X(I1:N) Real array of the abscissae xi , i=I1,I1+1,...,N. The use of X is

optional (see, MODEWF below).
F(I1:N) Real array of data values Ái , i=I1,I1+1...,N.
WF(I1:N) Real array of positive weights wi , i=I1,I1+1,...N, where wi is

associated with Ái . The use of WF is optional as we explain in MODEWF below.
MODEWF Integer variable that speci…es the weights WF(.) as follows:

MODEWF=0 Specifying that WF(.) is supplied by the user (the default
value).

MODEWF=1 The components of WF(.) are set to unity by the program,
WF(i)=1, i=I1,I1+1,...,N.

MODEWF=2 The components of WF(.) are set automatically to

WF(i) = ¾i=
NX

i=I1

¾ i, i = I1; : : : ; N, (10)

where

¾i =

(
1=rxi , i = I1 + 1; : : : ; N³PN

i=I1+1 ¾i

´
=(N ¡ I1), i = I1

(11)

and rxi = xi ¡ xi¡1.
MODEWF=3 The components of WF(.) are de…ned as in MODEWF=2,

but

¾i =

(
1= 4 xi , i = I1; : : : ; N ¡ 1³PN¡1

i=I1 ¾i

´
=(N ¡ I1), i = N

, (12)

where 4xi = xi+1 ¡ xi.
MODEWF=4 The components of WF(.) are set automatically to

WF(i) =

8
<
:

4xI1=2, i = I1
(4xi¡1 + 4xi)=2, i = I1 + 1; : : : ; N ¡ 1
4xN¡1=2, i = N

. (13)

MODEWF=5 Only the data values Ái , i =I1,I1+1,...,N, are given. The
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User guide for Algorithm XXX: L2WPMA ¢ 5

abscissae are set automatically to X(i)=i, i=I1,I1+1,...,N, and the weights are set
automatically to WF(i)=1, i=I1,I1+1,...,N.

KSECTN Integer variable that speci…es the number of monotonic sections,
corresponds to k, 1·KSECTN·N¡I1.

IORDER Integer variable, whose default value is IORDER=0 and speci-
…es that the …rst monotonic section is increasing. If IORDER=¡1, then the …rst
monotonic section is decreasing.

OUTPUT
Y(I1:N) Real array containing an optimal …t to F(.) at the end of the

calculation. It corresponds to vector y.
WY(I1:N) Real array containing the weights of the optimal …t at the end of

the calculation.
NK Integer variable that is set to the number of knots of the spline

representation of the optimal …t as follows: If !· > 1, then NK=· + 1, otherwise
NK=·, where !· and · are de…ned just before formula (9). Therefore its value is
in the range [I1,N].

IAKN(I1:NK) Integer array containing the data indices of the knots of the spline
representation of the optimal …t, where we set IAKN(NK)=N, if !· > 1 (note
that IAKN(NK)=N, whenever !· = 1). Therefore the knots are »i =X(IAKN(i)),
i=I1,I1+1,...,NK, where »1 = x1 and »NK = xn. Similarly, the coe¢cients in
expression (9) are ³ i =Y(IAKN(i)), i=I1,I1+1,...,NK, where ³1 = y1 and ³NK = yn .

NACT Integer variable, the number of constraints that are satis…ed as
equations at the end of the calculation, 0·NACT·N¡I1.

IACT(1:NACT) Integer array that provides the indices of the constraints satis-
…ed as equations at termination. It corresponds to set A.

PAR(I1+1:N) Real array containing the Lagrange parameters associated with
the constraints that are satis…ed as equations by Y(.) at the end of the calculation.
Speci…cally, these parameters are PAR(IACT(k)), k=1,2,...,NACT, and correspond
to ¸k , k 2 A.

ITAU(0:KSECTN,I1:(N¡I1+1)/2+1) Integer array such that ITAU(m; j ) is the
index of the (m¡1)th extremum of an optimal …t with m monotonic sections to the
…rst LOWER(j) or IUPPER(j) data, where 1· m ·KSECTN, I1· j ·(N¡I1+1)=2
+1, and the arrays LOWER and IUPPER are de…ned in the ”working space” sec-
tion below. ITAU(m; j) corresponds to ¿(m; j).

ITHETA(0:KSECTN) Integer array that holds the values of the sequence #(:)
employed in formulae (6). At the end of the calculation ITHETA holds the optimal
values of the integer variables {tj : j = 0; 1; : : : ;KSECTN}.

MODE Integer variable indicating the status of subroutine termination as
follows:

MODE=0 Unsuccessful return of L2WPMA, because KSECTN, the num-
ber of monotonic sections, is smaller than one.

MODE=1 Successful return of L2WPMA.
MODE=2 Successful return of L2WPMA due to jU j+jLj ·KSECTN+1.

The data itself provides the required optimal …t.

WORKING SPACE
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6 ¢ Ioannis C. Demetriou

SS(I1:N) Real array, argument of subroutine L2WMON (see Section 3), that
keeps either the values {®(p; j) : j = p; p + 1; : : : ; q} or the values {¯ (j; q) : j =
p; p + 1; : : : ; q} as they are de…ned by formulae (4) and (5). SS(N) contains the
value of the objective function (1) at the end of the calculation.

G(0:KSECTN,I1:(N¡I1+1)/2+1) Real array that keeps in G(m; j) the weighted
sum of squares of residuals of the …t associated with ITAU(m; j). G(.,.) is de…ned
in Section 1.

RG(I1:(N¡I1+1)/2+1) Real array that provides temporary storage for the sum
included in the brackets of formula (6).

LOWER(I1:(N¡I1+1)/2+1) Integer array that keeps the indices of the local
minima of F(.) denoted by L in Section 1. It is formed by subroutine XTREMA
(see Section 3).

IUPPER(I1:(N¡I1+1)/2+1) Integer array that keeps the indices of the local
maxima of F(.) denoted by U in Section 1. It is formed by subroutine XTREMA.

INDX(I1:N) Integer array that gives the data index of a local minimum or a
local maximum of F(.), such that INDX(LOWER(i))=i and INDX(IUPPER(i))=i.

FT(I1:N), WFT(I1:N), FTNEG(I1:N), WY1(I1:N) Real arrays that are ex-
plained in the comments of subroutine L2WPMA.

Z(1:N¡I1+1), WZ(1:N¡I1+1), IW(1:N¡I1+1), IAKNW(1,N¡I1+1) Arrays that
provide working space for subroutine L2WMON.

Subroutine L2WPMA is a …nite procedure. Unsuccessful return (MODE=0) is
caused only if KSECTN<1. Otherwise its return is successful, Y(.) satis…es the
constraints (2), ITHETA(.) satis…es the conditions (3) and MODE is set to 1 or 2.
The termination status is explained by certain messages.

The data may be weighted in one of …ve ways depending on the value assigned
to MODEWF. When each data point (xi; Ái) consists of an average of K, say,
observations at xi, one may wish to set the weight value of this point to the inverse
square of the standard deviation of these K observations, in which case MODEWF
has to be set to 0. If the weights are equal to 1, then we set MODEWF=1 and
the user need only supply X and F. When we set MODEWF=2, the weights are
de…ned by (10) automatically so as to re‡ect possible di¤erences in the abscissae
spacing. Speci…cally, the closer is X(i) to X(i ¡1), the larger is the value we assign
to the weight WF(i), according to formulae (10). Moreover, in order to de…ne
WF(I1) we require that the weights are normalized so that their sum equals 1.
Similarly for the case MODEWF=3, but formula (12) is used instead of (11). If
the abscissae are equally spaced, then the options MODEWF=2 and MODEWF=3
imply WF(i)=1/(N¡I1+1), i=I1,I1+1,...,N, and the value of (1) gives an estimator
of the variance of the population that provided the sample Ái, i=I1,I1+1,...,N.
Further, since the length of [X(i ¡ 1),X(i)] is a measure of our information over
the interval, a typical choice of weights (see [1: p.220]) is provided by formulae
(13) that is activated by setting MODEWF=4. Finally, if only the data values Ái ,
i=I1,I1+1,...,N, are available, where we assume that they have been derived with
the natural order {I1,I1+1,...,N}, then X and WF are de…ned automatically by
setting MODEWF=5.
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3. THE PURPOSE OF THE SUBROUTINES

The Fortran software for the calculation described by [3] consists of …ve subrou-
tines. Common blocks and private array storage are avoided. The working space is
directed through the argument list of each subroutine.

Single and double precision versions have been developed for practical use. All
subroutines begin with comments that explain the input and output arguments, the
working space and the method followed. The entire code consists of 1455 Fortran
77 lines including comments. The number of lines of code for each subroutine is:
L2WPMA 740, TRIVIA 183, XTREMA 137, L2WMON 250 and MESSGW 145.
The purpose of each subroutine is as follows.

Subroutine L2WPMA Interface to the user. Given I1, N, X(.), F(.), WF(.)
and KSECTN, it calculates a best weighted least squares approximation Y(.) to
F(.) as outlined in [3]. The use of X and WF is optional. In addition, the user
may specify the order of the …rst monotonic section and may allow WF to be
calculated automatically from the abscissae spacing. The underlying method is
described by [2], except that L2WPMA employs weights and at the end of the
calculation it provides the knots of the spline representation (9) of the solution and
the corresponding Lagrange multipliers. It calls subroutines TRIVIA, XTREMA,
L2WMON and MESSGW. The complexity of L2WPMA is O(njU j + kjU j2), when
k ¸ 3, where n is the number of data points and jU j is the number of the local
maxima of the data, which is always bounded by n=2. This complexity reduces to
O(n) when k = 1 or k = 2.

Subroutine TRIVIA In the beginning of subroutine L2WPMA, subroutine
TRIVIA is called to check on the following trivial cases. If KSECTN< 1 then a
MODE=0 return of L2WPMA is caused. If KSECTN=1 then TRIVIA returns
to subroutine L2WPMA and subroutine L2WMON is called to calculate the best
monotonic increasing or decreasing approximation to the data. If KSECTN¸1
and N=I1 or F(I1)·F(I1+1)· ¢ ¢ ¢ ·F(N) or F(I1)¸F(I1+1)¸ ¢ ¢ ¢ ¸F(N) then the
data satis…es the constraints, thus it is the required optimal approximation, and on
return to subroutine L2WPMA termination occurs. The complexity of subroutine
TRIVIA is O(n), where n is the number of data.

Subroutine L2WMON Given F(.), WF(.) and integers L1 and LN such that
I1·L1·LN·N, subroutine L2WMON calculates the values ®(L1,i), i=L1,L1+1,...,
LN, where ®(.,.) is de…ned by (4). The return of the solution components that
occur in ®(L1,LN) depends on a ‡ag, whose value is set by the calling subroutine
L2WPMA. L2WMON for this calculation implements a modi…cation of Algorithm
1 of [4] that allows a weight to each Ái. Its complexity is O(n), where n=LN¡L1+1.
The values ¯(i,LN), i=L1,L1+1,...,LN, de…ned by formula (5), can be calculated
by applying L2WMON to the data FT(i), i=L1,L1+1,...,LN, associated with the
weights WFT(i), i=L1,l1+1,...,LN, where FT and WFT are arrays that keep the
elements of F and WF in reverse order. Furthermore, L2WMON, together with
the monotonic components that occur at ®(L1,LN), provides the knots of the cor-
responding spline representation and the Lagrange multipliers associated with the
solution.

Subroutine XTREMA It forms the sets L and U , LOWER and IUPPER
respectively, that hold the indices of the local minima and the indices of the local
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8 ¢ Ioannis C. Demetriou

maxima of the data {Ái: i=I1,I1+1,...,N} as described by [4]. Its complexity is
O(n), where n is the number of the data.

Subroutine MESSGW It contains certain messages associated with the oper-
ation of subroutines L2WPMA and TRIVIA.

4. OUTPUT FROM A TEST EXAMPLE

This section presents an example of the use of the package L2WPMA. The calcu-
lations were performed on a personal computer with an Intel 733 MHz processor
(32 bits word length), operating with MS Windows 98 and using the Compaq
Visual FORTRAN 6.1 compiler in single precision arithmetic. A simple driver
program of L2WPMA uses I1=1, N=14, {(xi ; Ái) : i = 1;2; :::; N}, where {xi =
i : i = 1;2; :::; N}, Á1 = ¡0:1, Á2 = 0:71, Á3 = 0:69, Á4 = 0:87, Á5 = ¡1,
Á6 = ¡1:11, Á7 = Á8 = 1, Á9 = Á10 = ¡1, Á11 = 0:68, Á12 = 0:73, Á13 = 0:70 and
Á14 = 0:50, and {wi = 1 : i = 1; 2; :::;N }. We applied the driver program by requir-
ing KSECTN=4 monotonic sections and L2WPMA carried out the calculation ter-
minating with the output displayed in Fig. 1. Due to the (even) value of KSECTN,
the computer program formed the sets L = f1; 3; 6; 9; 14g and U = f2; 4; 7; 12g,
while at termination, the KSECTN£jU j array ¿=ITAU is

¿ =

0
BB@

1 1 1 1 0
1 2 4 7 7
1 3 6 9 0
0 0 0 0 7

1
CCA (14)

The integers ti=ITHETA(i), i = 0; 1; : : : ;KSECTN, presented in Fig. 1, are
derived by combining (7) and (14) as follows. Initially, we have t4 = 14, which
is the 5th element of L. In view of (7), we obtain t3 = ¿(4; 5) = 7, which is the
3rd element of U , and subsequently t2 = ¿ (3; 3) = 6, which is the 3rd element of
L, t1 = ¿ (2;3) = 4, which is the 2nd element of U , and …nally t0 = ¿(1; 2) = 1.
Associated with the tis, let y 2 R14 be the …t to Á that has k = 4 monotonic
sections, whose components are shown in the column labeled ’(Y)’ in Fig. 1. We
see that yi, i = 1; 2; :::;14, satisfy the constraints y1 · y2 · y3 · y4, y4 ¸ y5 ¸ y6,
y6 · y7 and y7 ¸ y8 ¸ ¢ ¢ ¢ ¸ y14, and we are going to prove that y does minimize (1)
subject to these constraints. Indeed, …rst due to formula (8), we obtain the identities
2w1(y1 ¡ Á1) = ¡¸2, 2w2(y2 ¡ Á2) = ¸2 ¡ ¸3; : : : ; 2w13(y13 ¡ Á13) = ¸14 ¡ ¸13 and
2w14(y14 ¡ Á14) = ¸14. Then, in view of the values (see column labeled ’Y’ in Fig.
1) y1 =Á1, y2 = y3 = 0:7, yi = Ái , for i = 4;5; : : : ; 8, and y9 = y10 = ¢ ¢ ¢ = y14 =
0:1017, it is straightforward to verify (the actual formulae are presented in Section
2 of [3]) that the numbers shown in the column labeled ’(PAR)’ in Fig. 1 are the
Lagrange multipliers ¸2 = 0, ¸3 = 0:02, ¸i = 0, for i = 4; 5; : : : ; 8, ¸10 = ¡2:20,
¸11 = ¡4:41, ¸12 = ¡3:25, ¸13 = ¡1:99 and ¸14 = ¡0:80. Because ¸i ¸ 0, for
i 2 [2; t1][ [t2 +1; t3], and ¸i · 0, for i 2 [t1 + 1; t2] [ [t3 +1; 14], the Karush-Kuhn-
Tucker conditions for the solution of the quadratic programming problem stated
above are satis…ed.

Next, we applied the driver program to the same data as those in Fig. 1 for
KSECTN=1,2,..., and the corresponding smoothed values are presented in Table
1 under the headings k = 1; k = 2; : : : ; k ¸ 8. The …rst three columns of Table 1
present the vectors x, Á and w, while the last row gives the value of the objective
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function (1) at each approximation. Certain features of the optimal approximation
are demonstrated by this example. They are that as k increases, most of the
extrema of the …ts are preserved, the ranges of constant components are reduced,
some monotonic sections may degenerate to a single point (as when k = 7, where
the corresponding approximation consists of 6 monotonic sections) and Á is the
optimal …t whenever KSECTN¸8, because Á satis…es the constraints.

Table 2 presents output from an experiment similar to that in Table 1, except
that the abscissae take the nonuniformly spaced values of column 2. We applied
the driver program with MODEWF=2 and the weights presented in column 4 were
generated automatically due to (10) giving WF(1)=0.0714, WF(2)=0.0116 and so
on up to WF(14)=0.7244. First we see that the best weighted approximations
of Table 2 exhibit features broadly similar to the approximations in Table 1. In
particular, let y 2 Rn be the best weighted approximation when k = 4 in Table 2,
which is associated with t1 = 7; t2 = 9 and t3 = 12, obtained from

¿ =

0
BB@

1 1 1 1 0
1 2 4 7 12
1 3 6 9 0
0 0 0 0 7

1
CCA (15)

by analogy with (14). Consequently the components of y satisfy the constraints
y1 · y2 · ¢ ¢ ¢ · y7, y7 ¸ y8 ¸ y9, y9 · y10 · y11 · y12 and y12 ¸ y13 ¸ y14, and
by arguments similar to those in the paragraph following (14), we can show that
the values y1 = y2 = ¢ ¢ ¢ = y6 = ¡0:1298 and yi = Ái; i = 7; 8; : : : ; 14, minimize
(1) subject to these constraints. Indeed, it is straightforward to verify that (8) is
satis…ed with ¸2 = 0:0043; ¸3 = 0:0237; ¸4 = 0:0292; ¸5 = 0:0463; ¸6 = 0:0067,
and i̧ = 0; i = 7; 8; : : : ; 14 and since ¸i ¸ 0, i 2 [2; t1] [ [t2 + 1; t3]; and ¸i · 0,
i 2 [t1 + 1; t2] [ [t3 + 1; 14], the Karush-Kuhn-Tucker conditions for the solution of
this quadratic programming problem are satis…ed. We conclude that the di¤erences
between the corresponding approximations of Tables 1 and 2 are the result of the
use of the weights.

Figs 2 and 3 illustrate the best approximations obtained by applying subroutine
L2WPMA to certain data sets. Fig. 2 presents an optimal …t with k = 6 monotonic
sections, which may be viewed as the result of an intermediate step of a calculation
that may further improve the …t. Here, a disadvantage of the smoothing technique
is shown at the rightmost monotonic section of this …t, where the data errors are
too small to be detected by the …rst di¤erences. Further, the particular k of Fig.
3 allows L2WPMA to achieve the piecewise monotonicity property it sets out to
achieve and, generally, any degree of undulation in the data can be accommodated
by choosing a suitable k.

<Tables 1 and 2 and Figs 1, 2 and 3 belong to this section>

5. DOCUMENTATION

Distribution material that includes single and double precision versions of the code,
driver programs, numerical examples with output in order to help new users of the
method and documentation is available in ASCII form accompanying [3].
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The documentation, namely …le INSTDE04.txt of the distribution material, in-
cludes description of the driver programs, comments on the output of several test
examples that help the usage of L2WPMA, provides technical details about instal-
lation, compilation, linking, running and testing of the Fortran codes, and remarks
on the Fortran listings.
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Table 1  Best approximations to the data x-φ-w, where the weights w are set equal to unity. The local 
maxima of an approximation are displayed with bold characters and the local minima with underlined ones. 
The best approximation for k=6 coincides with that when k=7, and for every k≥8, it coincides with the data. 
 

Data Best approximations with k monotonic sections 
x     φ w k=1 k=2 k=3 k=4 k=5 k=6 k=7 k≥8 

1.00 –0.10 1 –0.1000 –0.1000 –0.1000 –0.1000 –0.1000 –0.1000 –0.1000 –0.1000 
2.00 0.71 1 0.0178 0.0320 0.0320 0.7000 0.7000 0.7000 0.7000 0.7100 
3.00 0.69 1 0.0178 0.0320 0.0320 0.7000 0.7000 0.7000 0.7000 0.6900 
4.00 0.87 1 0.0178 0.0320 0.0320 0.8700 0.8700 0.8700 0.8700 0.8700 
5.00 –1.00 1 0.0178 0.0320 0.0320 –1.0000 –1.0000 –1.0000 –1.0000 –1.0000 
6.00 –1.11 1 0.0178 0.0320 0.0320 –1.1100 –1.1100 –1.1100 –1.1100 –1.1100 
7.00 1.00 1 0.0178 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
8.00 1.00 1 0.0178 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
9.00 –1.00 1 0.0178 0.1017 –1.0000 0.1017 –1.0000 –1.0000 –1.0000 –1.0000 

10.00 –1.00 1 0.0178 0.1017 –1.0000 0.1017 –1.0000 –1.0000 –1.0000 –1.0000 
11.00 0.68 1 0.6525 0.1017 0.6525 0.1017 0.6525 0.6800 0.6800 0.6800 
12.00 0.73 1 0.6525 0.1017 0.6525 0.1017 0.6525 0.7300 0.7300 0.7300 
13.00 0.70 1 0.6525 0.1017 0.6525 0.1017 0.6525 0.7000 0.7000 0.7000 
14.00 0.50 1 0.6525 0.1017 0.6525 0.1017 0.6525 0.5000 0.5000 0.5000 

Sum of squares of residuals 
(1): 7.9986 7.6374 3.9964 3.6735 0.0325 0.0002 0.0002 0.0000 

 
 
 
Table 2 Best weighted approximations to the data x-φ-w, where the weights w are calculated by formulae 
(10). The notation of Table 1 is used. 
 
 Data Best weighted approximations with k monotonic sections 

i x     φ w k=1 k=2 k=3 k=4 k=5 k=6 k=7  k≥8 

1 0.0021 –0.10 0.0714 –0.2341 –0.2341 –0.1298 –0.1298 –0.1000 –0.1000 –0.1000 –0.1000 
2 0.7338 0.71 0.0116 –0.2341 –0.2341 –0.1298 –0.1298 0.7055 0.7055 0.7055 0.7100 
3 3.2849 0.69 0.0033 –0.2341 –0.2341 –0.1298 –0.1298 0.7055 0.7055 0.7055 0.6900 
4 4.2757 0.87 0.0086 –0.2341 –0.2341 –0.1298 –0.1298 0.8700 0.8700 0.8700 0.8700 
5 4.6491 –1.00 0.0227 –0.2341 –0.2341 –0.1298 –0.1298 –1.0000 –1.0000 –1.0000 –1.0000 
6 7.1108 –1.11 0.0034 –0.2341 –0.2341 –0.1298 –0.1298 –1.1100 –1.1100 –1.1100 –1.1100 
7 8.2084 1.00 0.0077 –0.2341 –0.2341 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
8 8.7843 1.00 0.0147 –0.2341 –0.2341 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
9 9.2829 –1.00 0.0170 –0.2341 –0.2341 –1.0000 –1.0000 –1.0000 –1.0000 –1.0000 –1.0000 

10 9.5207 –1.00 0.0356 –0.2341 –0.2341 –1.0000 –1.0000 –1.0000 –1.0000 –1.0000 –1.0000 
11 9.6939 0.68 0.0489 0.5188 0.6800 0.5188 0.6800 0.5188 0.6800 0.6800 0.6800 
12 11.1139 0.73 0.0060 0.5188 0.7300 0.5188 0.7300 0.5188 0.7300 0.7300 0.7300 
13 11.4583 0.70 0.0246 0.5188 0.7000 0.5188 0.7000 0.5188 0.7000 0.7000 0.7000 
14 11.4700 0.50 0.7244 0.5188 0.5000 0.5188 0.5000 0.5188 0.5000 0.5000 0.5000 

Weighted sum of squares of 
residuals (1): 0.1085 0.1059 0.0422 0.0395 0.0026 1.03E–06 1.03E–06 0.0000 
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     ----------------------------------------- 
     RETURN FROM L2WPMA WITH MODE =     1 
     NUMBER OF DATA (F)           =    14 
     NUMBER OF MONOTONIC SECTIONS =     4 
     NUMBER OF LOCAL MINIMA IN F  =     5 
     NUMBER OF LOCAL MAXIMA IN F  =     4 
     ----------------------------------------- 
 
            INDICES OF EXTREMA AT OPTIMUM 
            Increment      Data index 
            (J)            (ITHETA) 
                0                1 
                1                4 
                2                6 
                3                7 
                4               14 
 
            INDICES OF ACTIVE CONSTRAINTS AT OPTIMUM 
            Increment      Active constraint      Lagrange mult 
            (I)            (IACT)                 (PAR(IACT)) 
                1                3                  0.02 
                2               10                 -2.20 
                3               11                 -4.41 
                4               12                 -3.25 
                5               13                 -1.99 
                6               14                 -0.80 
 
            INDICES OF KNOTS AT OPTIMUM 
            Increment      Knot index      Spline coeff 
            (I)            (IAKN)      (Y(IAKN)) 
                1                1 -0.1000 
                2                2        0.7000  
                3                4        0.8700 
                4                5       -1.0000 
                5                6       -1.1100 
                6                7        1.0000 
                7                8        1.0000 
                8                9        0.1017 
                9               14        0.1017 
 
       Data points  Measurements  Data weights  Best appxmtn  Lagrange mult 
       (X)          (F)           (WF)          (Y)           (PAR) 
 
    1    1.0000      -0.1000       1.0000        -0.1000 
    2    2.0000       0.7100       1.0000         0.7000        0.00 
    3    3.0000       0.6900       1.0000         0.7000        0.02 
    4    4.0000       0.8700       1.0000         0.8700        0.00 
    5    5.0000      -1.0000       1.0000        -1.0000        0.00 
    6    6.0000      -1.1100       1.0000        -1.1100        0.00 
    7    7.0000       1.0000       1.0000         1.0000        0.00 
    8    8.0000       1.0000       1.0000         1.0000        0.00 
    9    9.0000      -1.0000       1.0000         0.1017        0.00 
   10   10.0000      -1.0000       1.0000         0.1017       -2.20 
   11   11.0000       0.6800       1.0000         0.1017       -4.41 
   12   12.0000       0.7300       1.0000         0.1017       -3.25 
   13   13.0000       0.7000       1.0000         0.1017       -1.99 
   14   14.0000       0.5000       1.0000         0.1017       -0.80 
 
  Value of objective function at the optimum=    0.3673483610E+01 

 
 
Fig. 1  Output of software package L2WPMA due to a driver program presenting the termination status, the 
number of data, the number of monotonic sections, the number of data extrema counting possibly the end 
point indices I1 and N (as follows from the definition of L and U), the optimal values of the integer 
variables (namely the positions of the turning points of the fit), the indices of active constraints and the 
corresponding Lagrange multipliers, the knot indices and the coefficients of a spline representation of the 
best fit and, Y, the best fit to the data, together with X, F, WF and PAR. 
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Fig. 2  Best least squares approximation with k=6 or k=7 monotonic sections to 100 data points generated 
by adding uniformly distributed random numbers from the interval (–0.5,0.5) to the measurements of 
f(x)=sin(5x)–x at equally spaced abscissae. The data are denoted by (+), the best approximation by (o) and 
the piecewise linear interpolant to the smoothed values illustrates the fit. The first decreasing section 
suggests that a better approximation is possible by increasing k. 
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Fig. 3  Best least squares approximation with 8 monotonic sections to 200 data points generated as in Fig. 2. 
The data are denoted by (+) and the piecewise linear interpolant to the smoothed values illustrates the fit. 

 

 




