
Schwarz–Christoffel Toolbox User’s Guide

Version 2.3

Tobin A. Driscoll∗

The Schwarz–Christoffel Toolbox (SC Toolbox) is a collection of M-files for the interac-
tive computation and visualization of Schwarz–Christoffel conformal maps in MATLAB1 ver-
sion 6.0 or later. (Earlier versions of the toolbox are avaiable for earlier versions of MATLAB.)
The toolbox is a descendant of SCPACK, a Fortran package developed by L. N. Trefethen in the
early 1980’s [Tre80, Tre89]. However, the SC Toolbox is interactive and graphical, requires
no programming by the user, and has many capabilities not in SCPACK.

1 Executive summary

You can do everything graphically by starting scgui or by using command line functions.
Here is an outline of the typical mapping process.

1. Create a polygon by

• drawing it in the Polygon Editor (polyedit ), or

• calling polygon with a vector of vertices (and, for an unbounded polygon, a vector
of angles).

2. Create a map by solving numerically for the necessary parameters (functions diskmap ,
hplmap , extermap , stripmap , and rectmap ). Map types differ primarily by choice of
the image region, except that extermap maps to the exterior rather than the interior of
the given polygon.

3. You may now

• Look at the SC parameters and an accuracy assessment (e.g., type the name of the
map without a semicolon).

• Visualize the map’s action (plot ).

• Evaluate the map in both directions (parentheses, eval , or evalinv ).

• Extract internal map data for your own use (parameters and others).
∗Department of Mathematical Sciences, Ewing Hall, University of Delaware, Newark, DE 19716;

driscoll@math.udel.edu .
1MATLAB is a registered trademark of The MathWorks, Inc.

1



Figure 1: Notational conventions for the Schwarz–Christoffel transformation. In this case z1

and z2 are mathematically distinct but graphically difficult to distinguish.

2 Introduction

2.1 Schwarz–Christoffel mapping

The basic Schwarz–Christoffel formula is a recipe for a conformal map f from the complex
upper half-plane (the canonical domain) to the interior of a polygon (the physical domain).
The “polygon” may have cracks or vertices at infinity. Its vertices are denoted w1, . . . , wn, and
the numbers α1π, . . . , αnπ are the interior angles at the vertices.2 The pre-images of the
vertices, or prevertices, are real and denoted by z1, . . . , zn. They satisfy

z1 < z2 < · · · < zn = ∞.

Figure 1 illustrates these definitions.
If vertex wj is finite, 0 < αj ≤ 2. If wj is infinite, −2 ≤ αj ≤ 0.3 A necessary constraint is

that
n∑

j=1

αj = n − 2.

Essentially, this means that the total turn is 2π.
The Schwarz–Christoffel formula for the map f is

f(z) = f(z0) + c

∫z

z0

n−1∏
j=1

(ζ − zj)
αj−1 dζ. (1)

The main practical difficulty with this formula is that except in special cases, the prevertices
zj cannot be computed analytically. Because Möbius transformations have three degrees of

2Earlier versions of the toolbox, and much of the literature, instead use β1, . . . , βn, where βj = αj − 1.
3This is consistent at the point at infinity with the notion of “interior angle” as the signed angle swept from the

outgoing edge, through the interior, to the incoming edge.

2



freedom, three of the prevertices, including the already fixed zn, may be be chosen arbitrarily.
The remaining n−3 prevertices are then determined uniquely and can be obtained by solving
a system of nonlinear equations. This is known as the Schwarz–Christoffel parameter
problem, and its solution is the first step in any Schwarz–Christoffel map. Once the param-
eter problem is solved, the multiplicative constant c can be found, and f and its inverse can
be computed numerically.

Many modifications of the basic Schwarz–Christoffel formula are possible. For example, if
the fundamental domain is the unit disk rather than the upper half-plane, the prevertices zj

lie counterclockwise on the unit circle, and the resulting formula is identical except that the
product has n terms rather than n − 1. Other variations of the formula map from the strip
0 ≤ Im z ≤ 1 or from a rectangle. These two variations are particularly important when the
target region is highly elongated in one direction.

Still another variant is the exterior map, in which the fundamental domain is the unit disk
and the target region is the exterior of a polygon. In this case the integrand has an additional
singularity in the interior of the disk. Assuming this singularity is fixed at the origin, only
one prevertex may be chosen arbitrarily.

2.2 Toolbox features

• Solution of the parameter problem for half-plane, disk, strip, rectangle, and exterior
mapping

• Cross-ratio formulation of the parameter problem for multiply elongated regions (see
section 4.3)

• Graphical input of polygons (see section 3.2)

• Computation of forward and inverse maps

• Adaptive plotting of images of orthogonal meshes

• Graphical and object-oriented user interfaces

2.3 Requirements

The most recent edition of the SC Toolbox requires MATLAB version 6.0.4 As far as I know
it works well under Release 13 (MATLAB 6.5); however, some changes to the language in
that release may cause problems still undetected. The toolbox is as platform-independent as
MATLAB is—that is, there should be few problems. One notable exception is that graphical
interfaces may not look exactly as intended on all platforms.

The graphical interfaces should be accessible to MATLAB novices and experts alike. Command-
line use of the toolbox demands some understanding of MATLAB fundamentals such as vec-
tors, matrices, functions, and graphics. An understanding of the use of classes and objects is
helpful, but probably not necessary.

4See the website below for obtaining toolbox versions for earlier versions of MATLAB.

3



2.4 Obtaining and installing the SC Toolbox

The latest version of the SC Toolbox is available over the Web at

http://www.math.udel.edu/ ˜driscoll/SC

If you cannot reach this page, please send mail to the author at driscoll@na-net.ornl.gov .
The toolbox is distributed as a zip archive.

By default, the toolbox is installed into a directory tree rooted at the name sc . When you
want to use the SC Toolbox, you are responsible for making sure that this directory is on the
MATLAB path. See the help text for path , addpath , and editpath in MATLAB.

The SC Toolbox uses the package NESOLVE from Richard Behrens’ NONLINPK. The
necessary files are automatically unpacked into the SC Toolbox’s private subdirectory.

2.5 A simple example
Here we create the SC map from the unit disk to a MATLAB favorite, an L-shaped region.
First, we create the polygon and plot it:

>> p=polygon([i -1+i -1-i 1-i 1 0])

p =

0.0000 + 1.0000i
-1.0000 + 1.0000i
-1.0000 - 1.0000i

1.0000 - 1.0000i
1.0000
0.0000

>> plot(p)

Next, we construct the disk map.

4



>> f = diskmap(p);

Number of iterations: 13
Number of function evaluations: 18
Final norm(F(x)): 3.36023e-010
Number of restarts for secant methods: 0
>> f

diskmap object:

vertex alpha prevertex arg/pi
-----------------------------------------------------------------------

0.00000 + 1.00000i 0.50000 0.98974 + 0.14286i 0.045628948204
-1.00000 + 1.00000i 0.50000 0.98811 + 0.15378i 0.049144854230
-1.00000 - 1.00000i 0.50000 0.95325 + 0.30217i 0.097710854029

1.00000 - 1.00000i 0.50000 -1.00000 + 0.00000i 1.000000000000
1.00000 + 0.00000i 0.50000 0.00000 - 1.00000i 1.500000000000
0.00000 + 0.00000i 1.50000 1.00000 + 0.00000i 2.000000000000

Conformal center at 0.4955 - 0.5829i
c = -0.48783135 + 0.29499692i Apparent accuracy = 6.31e-008

After a brief computation, the parameters are found and some statistics about the itera-
tion used to find them are printed out. By entering the name of the map on a line without a
semicolon, we get a summary about the map. This summary lists the vertices of the target
polygon, their angle parameters, their preimages under the map, and (since they are on the
unit circle here) the arguments of those prevertices. Also reported are the image of the origin
(known as the conformal center), the multiplicitive constant in the map, and an experimen-
tally determined accuracy estimate. The default is to find maps accurate to within 10−8 in the
image domain, but that is not a guaranteed bound.

We now create a graphical representation of the map.
>> plot(f)

What is seen here are the images of ten evenly spaced circles centered at the origin and ten
evenly spaced radii in the unit disk. Notice how greatly distorted some sectors of the resulting

5



grid become. Also, the intersections are (of course) all orthogonal.
It would be more visually pleasing if the conformal center were along the line of symmetry

in the image region. At construction time, you have no control over where the conformal
center will be. However, it is a simple (and fast) matter to change the center after the fact.

>> f = center(f,-0.5-0.5i)

diskmap object:

vertex alpha prevertex arg/pi
-----------------------------------------------------------------------

0.00000 + 1.00000i 0.50000 0.83684 + 0.54744i 0.184399349354
-1.00000 + 1.00000i 0.50000 0.78821 + 0.61540i 0.211005533366
-1.00000 - 1.00000i 0.50000 -1.00000 + 0.00000i 0.999999999908

1.00000 - 1.00000i 0.50000 0.78821 - 0.61540i 1.788994466509
1.00000 + 0.00000i 0.50000 0.83684 - 0.54744i 1.815600650489
0.00000 + 0.00000i 1.50000 1.00000 + 0.00000i 2.000000000000

Conformal center at -0.5000 - 0.5000i
c = 0.46215045 + 0.46215045i Apparent accuracy = 3.07e-008

>> plot(f)

In the following sections we give more details on both the graphical and command-line in-
terfaces. In both types of interfaces the usual progression remains polygon → map parameters→ applications of the map.

6



3 Graphical interfaces

In the toolbox interfaces, buttons along the top of a window perform actions while controls
along the right side affect properties that influence the actions. To get a short explanation of
any button, let the mouse pointer hover over it. At certain times buttons or controls may be
“grayed out,” indicating that they are unavailable in the interface’s current state.

3.1 Toolbox interface

To start the toolbox interface, enter scgui . A new figure window will be created, looking like
Figure 2. (There may be differences in appearance across platforms.) The buttons along the
top edge take the following actions:

D
ra

w
a

ne
w

po
ly

go
n

M
od

if
y

th
e

cu
rr

en
t

po
ly

go
n

So
lv

e
fo

r
m

ap
pa

ra
m

et
er

s

Se
t

co
nf

or
m

al
ce

nt
er

P
lo

t
or

th
og

on
al

m
es

h

In
sp

ec
t

m
ap

pa
ra

m
et

er
s

Im
po

rt
/e

xp
or

t
to

pr
om

pt

Q
ui

t

The import/export function allows data to be transferred between the GUI and the MATLAB
workspace. Here “import” means from MATLAB to the GUI, and “export” is the opposite di-
rection.

The side controls are as follows:

Tolerance desired Requested accuracy for the next parameter solution.
Canonical domain Type of canonical domain (map type).
View View the physical domain (polygon), the canonical one, or

both simultaneously. In the canonical domain, the prever-
tices are marked by black dots for clarity.

Mesh lines These determine the values of x and y or r and θ that are
used in the canonical domain for mesh plots. After a plot,
these boxes are updated to show the used values. If these
values are edited and the plot is redrawn, the plot will use
the new values.

Once a map’s parameters have been found, you can map individual points back and forth
between the domains. Click inside (outside for exterior maps) the polygon or in the canonical
domain, depending on the current view. The forward or inverse map is computed and a point
is drawn in each domain. You may click as many times as you like. Right-clicking (or the
equivalent on your system) on any point brings up a dialog to let you inspect or change the
coordinates of the points.

7



F
ig

ur
e

2:
T

he
in

te
rf

ac
e

w
in

do
w

cr
ea

te
d

by
sc

g
u

i
(L

in
ux

ve
rs

io
n

sh
ow

n)
.

8



3.2 Polygon Editor

The “draw” and “modify” functions of the toolbox GUI bring up a new window for the Polygon
Editor, which should look like Figure 3. If you are modifying a polygon, it is displayed in the
axes. Otherwise the axes are empty. The buttons along the top refer to these actions:

A
dd

ve
rt

ic
es

in
se

qu
en

ce

M
ov

e
ve

rt
ic

es

In
se

rt
ve

rt
ic

es

D
el

et
e

ve
rt

ic
es

St
ar

t
ov

er

A
dd

fin
al

si
de

A
cc

ep
t

an
d

ex
it

D
is

ca
rd

an
d

qu
it

The first four of these buttons are mutually exclusive and define the current mode of opera-
tion:

Add Vertices are placed one at a time in order by mouse clicks.
Hold the mouse button down at a location to preview the
next edge of the polygon. The most recently drawn vertex
is shown in red.

Move Click and drag a vertex to a new location. You may move
only finite vertices, and they must stay inside the axes
box.

Insert Click on an existing polygon side to create a new vertex on
it. This vertex may then be moved to introduce a new cor-
ner. Vertices may be inserted on finite and infinite edges.

Delete Click on a vertex to remove it. Only finite vertices may be
deleted.

During the Add mode, a click outside the axes box begins defining an infinite vertex. You
must immediately click again outside the box in order to start the “return” edge. The following
vertex must be finite, and you cannot place it in a location that would cause the return edge
to intersect the previous edge at a finite point. The preview edge will reflect this restriction
and limit you to valid points.

To finish or “close” the polygon, you can either click on the first vertex while in Add mode
or use the “final side” button. At this point the last edge is drawn and Add mode becomes
permanently disabled (even if the last vertex is subsequently deleted). The other editing
modes remain available for making changes.

Moving a neighbor of an infinite vertex causes the infinite edge to move as well so as
to keep the angle at infinity constant. Deleting a neighbor of infinity changes the angle at
infinity so that only the infinite edge moves. You also cannot delete a finite vertex that is
doubly adjacent to infinity. (The other toolbox routines cannot deal with adjacent infinite
vertices anyway.)

9



F
ig

ur
e

3:
T

he
Po

ly
go

n
E

di
to

r,
af

te
r

so
m

e
ve

rt
ic

es
ha

ve
be

en
cr

ea
te

d
(L

in
ux

ve
rs

io
n

sh
ow

n)
.

10



It is not difficult in adding, moving, and deleting vertices to create something which is not
a valid polygon. One notable example is when a formerly infinite vertex implicitly becomes
finite as defined by the intersection of edges. The toolbox will not be able to make sense of
this situation, and the Polygon Editor does little to stop you from creating it.

When you are satisfied with the polygon, click on OK to return to the main GUI, where
your polygon will replace any other data that might exist. You can click on Start over at any
time to erase all the vertices and reenter the Add mode. Clicking on Quit will return to the
main GUI without changing any data already there.

Restricting vertex placement

The three top controls on the right of the Polygon Editor restrict the placement of vertices in
order to create regularity:

Snap all vertices onto a discrete grid. The spacing of the grid can be
controlled by editing the field below the button. Snapping also affects
clicks outside the axes box (infinite vertices). It is deactivated when the
other restriction modes below are in use.

Discretize the side lengths of the polygon. The quantum of the dis-
cretization may be edited. This feature is deactivated when snapping
is activated or while adding an infinite vertex, and it is disabled when
in Move mode.

Discretize the angles of the polygon. The quantum of the discretization
may be edited in terms of fractions of 180◦. This feature is deactivated
when snapping is activated, and it is disabled when in Move mode.

In all cases the preview line (displayed when the mouse button is held down in Add mode)
reflects any restrictions.

11



4 Command-line interface

Each polygon or SC map is an object belonging to a particular class. A class has a construc-
tor, used to create objects of that class, and methods, which define all the operations known
for objects of the class. You can use the methods command to get a listing of methods; e.g.,
methods polygon .

The classes of significance to a user are shown in Figure 4. The scmap class is a “parent”
class for all the specific SC map classes. You will not normally create objects of this class
directly.

Figure 4: Classes in the SC Toolbox.

Below we describe the capabilities and typical usage of the classes. The most general
syntax reference can be found in the online help.

4.1 Polygons

A polygon object holds vertex and angle data. If the polygon is finite (i.e., has no infinite ver-
tices), the angle data is computed automatically by the constructor. Vertices may be specified
in either clockwise or counterclockwise order. For unbounded polygons, there is no way to
determine the angles at an infinite vertex and its neighbors, so at least this much must be
provided to the constructor. (See the “infinite vertices” demo from scdemo to get a feel for how
to specify such angles.) Polygons may instead be drawn using the Polygon Editor by invoking
p=polyedit . See section 3.2.

Once a polygon has been created, you may operate on it using the methods listed in Ta-
ble 1. Suppose p is a constructed polygon. The syntax for most methods is the usual functional
notation, e.g. plot(p) . The arithmetic operators are used in the usual infix notation to trans-
late and scale by complex scalars, e.g. i*p + 2 . Subscript referencing also obeys the usual
MATLAB conventions, e.g. p(1:4) for the first four vertices.

12



Table 1: Methods for polygons
polyedit Graphically modify the polygon.

display Show the vertices as a two-column matrix.

plot Plot the polygon.

cdt Compute constrained Delaunay triangulation.

length Return the number of vertices.

vertex Return the vertices as a complex vector.

angle Return the interior angles, divided by π.

+, - , * Translate/scale the vertices.

() Retreive or assign selected vertices.

isinpoly Detect points in interior (bounded polygons only).

Table 2: Schwarz–Christoffel map constructors
Name Canonical domain Physical domain

diskmap Unit disk Polygon interior

hplmap Upper half-plane Polygon interior

stripmap Bi-infinite strip Polygon interior

rectmap Rectangle Generalized quadrilateral

extermap Disk Polygon exterior

crdiskmap Disk (cross-ratio representation) Bounded polygon interior

crrectmap Axes-aligned polygon Bounded polygon interior

4.2 SC maps

To create a map, you specify a polygon that determines the target region and invoke a map
constructor. The constructor’s name determines the canonical region and the type of map.
Valid constructor names are given in Table 2. The constructor’s main task is to find the
correct values of the unknown parameters in the SC map. This may take anywhere from a
few seconds to several minutes; the time required scales roughly as the cube of the number of
vertices. A progress indicator is displayed by default.

The constructors for the SC maps have a number of possible calling sequences. For exam-
ple:

• diskmap(p)
Here p is a polygon. The map is created to the appropriate region defined by p (its
interior, except for extermap ), using default settings.

• diskmap(p,options)

13



Override the default options, such as desired accuracy, in finding map parameters. See
the online help for scmapopt on how to create the options argument.

• diskmap(f,p)
If f is an existing diskmap, and p is a polygon, find the map to p using the parameters
of f as a starting point. This continuation approach is useful for rare difficult regions
for which the nonlinear equations solver failed to find a solution directly.

• diskmap(p,z) or diskmap(p,z,c)
Create a map using specified prevertices. No parameter problem is solved, and the
prevertices are used even if they are not compatible with the given polygon. (In that
case, a completely inaccurate map is created.) If the constant c is not specified, it is
found by integrating along one side of the polygon.

• diskmap(z,alpha) or diskmap(z,alpha,c)
Create a map using the specified prevertices z and the angle parameters alpha . No
parameter problem is solved. The image polygon is constructed by evaluation of SC
integrals. If the constant c is not given, it is taken to be 1.

Some notable exceptions to the patterns above are:

• In stripmap , you may supply an additional argument in the form of a length-two vector
giving the indices of the vertices that map to the ends of the strip. If you do not, you will
be prompted to select these vertices graphically.

• In rectmap , you may supply an additional argument in the form of a length-four vector
containing the indices of the vertices that map to rectangle corners. These must be
given in counterclockwise order, with the first two describing a long rectangle edge. If
this argument is not given, you will be prompted to select the corners graphically.

• The crdiskmap and crrectmap variants do not use prevertices directly, so those calling
sequences that supply them are not understood. See section 4.3.

In some cases it is trivial to change the canonical domain of an SC map using a Möbius
transformation. Where applicable, the map constructors can automatically convert an exist-
ing map in this fashion, foregoing the parameter problem solution. For example, if f is an
hplmap, diskmap(f) creates an equivalent diskmap to the polygon of f . The conversions
hplmap to diskmap and stripmap to diskmap are also possible.

Once a map f is created, you can get an estimate of its accuracy by entering accuracy(f) .
This integrates between neighboring prevertices (excluding infinities) and compares to the
actual sides of the polygon, reporting the maximum discrepancy.

Once a map has been constructed, you can use generic function names and syntaxes to
do common tasks. For example, evaluation of a map called f at a point z can be done with
parenthetical notation, as f(z) ; a plot of orthogonal grid lines can be generated by plot(f) .
The available commands are given in detail below.

Evaluation

Suppose that f is an SC map and that zp and wp are complex vectors.

14



• f(zp) or eval(f,zp)
Evaluates the map at the point(s) in zp . Input points are checked for being interior to
the source domain. Inf may be a valid input depending on type of map.

• eval(f,zp,tol)
Attempts to find values within tol . (You can relax, but not improve on, the tolerance
suggested by accuracy .)

• evalinv(f,wp) or eval(inv(f),wp)
Evaluate the inverse mapping (from polygon to canonical). Much slower than forward
mapping, as it first solves an ODE and then applies a Newton iteration to the forward
map. There is no checking of input points for validity.

• evalinv(f,wp,tol)
Inverse mapping with a tolerance request.

• evaldiff(f,zp) or eval(diff(f),wp)
Evaluate the derivative of the SC map. Very fast and accurate, since the map itself is an
integral.

For inverses and derivatives it is possible to create a “dummy” object. For example, one could
use the idiom g=inv(f); g(wp) .

It is much more efficient to call any of these methods on a vector of points all at once,
rather than one at a time in a loop.

Plotting

• [h,val1,val2] = plot(f)
Plots the image of a “natural” cartesian grid (rectilinear or polar) under the map. Ten
curves per direction are chosen automatically. The return arguments are handles to the
drawn lines, and the abscissae/ordinates or radii/angles of the source grid.

• [h,val1,val2] = plot(f,num1,num2)
Draw num1 and num2 curves in the orthogonal directions.

• h = plot(f,val1,val2)
Specify the source curve locations.

Points are chosen adaptively in the canonical domain in order to attempt to get smooth
curves in the image. Occasionally the refinement times out and an ugly straight line segment
is drawn; this is sometimes associated with a ray that terminates at the preimage of a “dis-
tant” vertex. Also, adaptive refinement is done only inside the axes box at the time plotting
begins. Normally the axes box is selected automatically based on the size of the region, but if
the axes are fixed and held at the time of the call then those limits are used. In short, zooming
to a particular region should be done prior to the plot call.

4.3 Cross-ratio (CR) formulations

Two classes, crdiskmap and crrectmap , use a rather different internal representation and
solution for the unknown map parameters. A detailed discussion of the underlying represen-
tation and method is given in [DV98].

15



Crowding

One of the greatest challenges in numerical Schwarz–Christoffel mapping is the crowding
phenomenon. Crowding is a problem when one deals numerically with the map to an elon-
gated region. Elongated polygons have prevertices which are spaced exponentially close in
the half-plane or disk, becoming indistinguishable in double precision when the local aspect
ratio exceeds about 20. Even for lesser aspect ratios, the parameter problem can become
exceedingly difficult to solve numerically. 5

The traditional response to crowding is to choose a different canonical domain. Thus, the
strip and rectangle maps are useful when the target region has a single principal direction of
elongation. These variations work well in such situations.

For multiply elongated regions, it is possible to choose other canonical domains, such as
slit strips [DV98, How94]. But this technique has several severe drawbacks, and the CR
formulation was created as a universal alternative. If a diskmap construction gives multiple
warnings about “severe crowding,” or the convergence seems to bog down for a long time, try
crdiskmap instead.

Usage

Externally crdiskmap is just like diskmap , and the resulting map can be used to map points
or draw a plot in the same way. The display of a crdiskmap is different, reflecting the dif-
ferent internal representation.6 You can use diskmap(f) to convert a crdiskmap into a
diskmap , but because of crowding, the resulting map may not be accurately computable ev-
erywhere.

You should also be aware that as a preprocessing step, crdiskmap may add trivial vertices
along the edges of the original polygon. There is no way to suppress this behavior, since it is
crucial to the success of the algorithm. For regions with many elongations, the number of
additional vertices may be considerable, adding to the computational time.

Rectified maps

Because of ill-conditioning, the disk is not an ideal fundamental domain for an elongated
region, even if one can compute the map accurately. For instance, if one wants to generate an
orthogonal grid using the disk, one must include points exponentially close to the boundary
of the disk in order to get a reasonable distribution of grid points in the image.

As an alternative, we can use the prevertices determined in a disk map and change the
angles (i.e., exponents) in the SC formula (1). The result will be a new polygon that is confor-
mally equivalent to the original, being related to it by one inverse and one forward SC map.
If we use only the exponents α = 0.5, 1, 1.5, and 2, the new polygon will have all right angles
and, after rotation, all sides parallel to the cartesian axes. We then refer to the composite
map (axes-parallel polygon to original target) as a rectified map. Axes-parallel polygons are
convenient for grid generation or finite differences.

5The crowding problem can occur for exterior maps as well. The protoypical example is the map to the exterior
of a long, thin, U-shaped region.

6You are not given prevertex positions, but instead n − 3 cross-ratios of 4-tuples of them. These 4-tuples form
overlapping quadrilaterals among the vertices.

16



Table 3: Methods for Möbius maps
display Print the transformation in fractional-linear form.

double Convert to a length-4 vector of constants.

() or eval Evaluate at point(s).

inv Return the inverse of the map.

+, - , * , / Translate/scale image by a complex constant.

Note that, once the angles are specified, there is no control over the side lengths, save for
a global scaling. These lengths are determined automatically; see [DV98] for details.7 It may
happen that the rectified polygon is self-intersecting.

The crrectmap class creates rectified maps from the CR formulation. The constructor
may be called with an existing crdiskmap or a polygon. In the latter case, the CR parameter
problem is solved first. There is no unique, or even obviously “natural,” choice of the angles
in a rectified polygon. You may supply them as a vector argument in the constructor call.
Otherwise, a side-by-side figure of target and rectilinear domains will be created, and you can
assign angles graphically. There is a constraint: that

∑
αj = n − 2. When this constraint is

satisfied, you can press the Recompute button to determine and display the rectilinear poly-
gon. This is much faster than solving the parameter problem, so you are free to experiment
with different sets of angles.

4.4 Möbius transformations

A moebius class is defined for the determination and application of Möbius transformations.
There are two ways to create such maps:

1. Specify two triplets of corresponding source/image points (optionally including Inf ), or

2. Give the constants in the transformation explicitly.

The methods for moebius maps are shown in Table 3. The notation f(z) , if f is a moebius
map and z is a scalar or vector, evaluates f at z .

4.5 Composite maps

In some applications it is useful to apply more than one SC map. For example, the map
between two polygons can be found as one forward and one inverse SC map. In other cases one
may want to use Möbius transformations or other transformations as additional processing
steps.

As a convenience for evaluating such composite maps, the SC Toolbox allows you to define
a composite map object. The syntax is

f = composite(f1,f2,...,fn);

7In the important case where four of the α’s are 0.5 and the others are 1, the rectilinear polygon is a rectangle
and the side lengths determine the the rectangle’s aspect ratio, or conformal modulus.

17



Table 4: Methods for examining map data.
center Return/set the conformal center (for maps from the disk).

polygon Return the polygon that defines the target domain.

parameters Return a structure holding the SC parameters.

scmapopt Return the options used for the solution of the parameter prob-
lem.

get Alternative to the above.

where any number of member maps are allowed. Each member map must be of one of these
types:

• any SC map (diskmap , crdiskmap , etc.);

• the inverse of an SC map (created using inv );

• a moebius map (see section 4.4); or

• an inline function of one variable.

Once the composite f is created, you can evaluate it at z with the natural syntax f(z) .
Of course, you are responsible for making sure each member map can handle the output of
the preceding one. For composites that do not involve any inline functions, the inverse
composition may be created using inv .

4.6 Low-level access

The object-oriented interface, in which commands like plot and eval do the right thing for
the type of map passed to them, is suitable for the most common uses of SC maps. However,
there are applications in which, say, the prevertices are of interest or particular SC integrals
must be evaluated directly. Such details are hidden from the user by default, but they are all
available.

Once created, a map object encapsulates all the information needed to compute with it.
To retrieve this information, use the methods listed in Table 4. In addition to the syntax
polygon(f) , parameters(f) , etc., the toolbox supports the familiar get(f,’polygon’)
and get(f,’prevert’) . The methods operating on a map access this information and call
low-level routines that do the actual work. These functions are contained in the top-level sc
directory. Each map type has its own set of low-level functions beginning with a one- or two-
letter prefix, e.g. deplot to plot disk-exterior maps. The low-level functions themselves are
documented, so you should be able to call them directly. Of particular interest are the xxquad
functions that numerically evaluate SC integrals. These functions need to be used with some
care; look at the xxparam and xxplot functions for tips and caveats.

18



5 Applications

5.1 Laplace’s equation

SC maps can be used to solve Laplace’s equation on polygonal regions, subject to piecewise-
constant Dirichlet and homogeneous Neumann boundary conditions. Computationally the
effort is not much greater than finding an SC map to the region. A function lapsolve is
provided for this purpose.

phi = lapsolve(p,bdata)

Here p is a polygon or an hplmap to a polygon taken to be the problem domain. (The
latter saves time when several different BVPs are to be solved on the same region.) The
vector bdata specifies the boundary condition on each side; a numerical value represents
a Dirichlet condition and NaNrepresents a zero Neumann condition.

phi = lapsolve(p)

In this version a graphical interface is created in order to let you assign the boundary
values interactively.

In either case the resulting phi is a composite (see section 4.5) object consisting of three
steps: an inverted SC map from the problem domain to the disk; a second SC map to a
“rectified” region whose sides align with the coordinate axes; and extraction of the real part
of the result. (For mathematical details see Chapter 5 of [DT02].) In practice one can use the
syntax phi(z) to compute phi at the points in z .

To aid the creation of plots of the solution, a triangulation routine for the interior of a
polygon is offered in the polygon class. A simple calling sequence would be

phi = lapsolve(p);
[tri,x,y] = triangulate(p);
trisurf(tri,x,y,phi(x+i*y))

There are some important caveats about these functions:

• No allowance is made for crowding; hence lapsolve will likely fail on elongated regions.

• triangulate is based on the built-in delaunay function, which does not really support
nonconvex regions. In practice triangulate should work fine unless the polygon has
a slit. In that case the solution computed by lapsolve is valid, but visualization as
suggested above will have problems.

• Very close to corners with small interior angle (say, π/6 or less), the inverse mapping
step in phi may fail to give an accurate result. (The issue is a small basin of attraction
for Newton’s method due to the nearby singularity in the map.) A fix for this problem is
still being investigated.

19



5.2 Faber polynomials

F = faber(f,k)

This function uses the Schwarz–Christoffel exterior map to compute the coefficients of
Faber polynomials for a polygon. A Faber polynomial is the analytic part of the Laurent
series of a power of the map. These polynomials have a number of interesting properties and
uses [Ell86, Mar65, SV93].

The parameter k is the highest degree of the polynomials being sought. The output F is
a cell array of length k+1 . Each element of the array is a vector of polynomial coefficients.
Thus, F(j) is a vector of length j representing a polynomial of degree j-1 . The coefficients
are in decreasing order of power (see polyval ), and the first coefficient is always real.

You can also call faber on a polygon, in which case an extermap is computed first.

6 Additional notes

6.1 Slow convergence

The nonlinear systems encountered in the solution of the parameter problem can bog down
or even halt the numerical solution. There is no quick way to choose a good initial guess.
You may notice very slow progress, or even failure to reach the requested tolerance. It is
often possible to speed matters via continuation from a less difficult target region, or to use
crdiskmap if the difficulty may be caused by elongations in the polygon.

6.2 Further reading

The book [DT02] is meant as a reference for and introduction to theoretical and practical
issues regarding SC maps. For introductory material about the transformation, see [CB90,
Hen74, SS93]. The theory and implementation of many variations of the transformation can
be found in [Däp88, Dav79, Flo86, FZ87, Hoe86, How90, How94, HT90, Pea91, Rep79, SD85,
Woo61]. Two surveys of variations and applications are [Tre93, TD98].

The SC Toolbox implements and extends the methods described by Trefethen in his ap-
pendix to [SS93]. For more on the design of SCPACK, which is very similar, see [Hen74,
Tre80, Tre89]. A paper specifically on the toolbox appeared in [Dri96]. The cross-ratio formu-
lation is introduced in detail in [DV98].

A FORTRAN implementation of SC mapping for doubly-connected regions bounded by
polygons called DSCPACK is due to Hu [Hu95].

For more on numerical conformal mapping in general, see [Hen86, Tre86]. An excellent
FORTRAN package called CONFPACK [Hou90] is available from netlib.org for maps to
regions with piecewise smooth boundary.

6.3 Suggestions and bug reports

I have tried to make the SC Toolbox robust, but I do not explicitly or implicitly warrant its
accuracy or reliability. Also, The MathWorks, Inc. is not in any way responsible for the SC
Toolbox’s design or maintenance.

20



I welcome complaints, suggestions, inquiries, and bug reports related to any aspect of the
SC Toolbox. I can be reached at driscoll@math.udel.edu . Feel free to report bugs, make
suggestions, or describe an interesting application.

I reserve copyright on the M-files and this guide. You may change or add to the toolbox’s
code for your own use. However, I request you redistribute only unmodified versions of the
toolbox. I am always glad to receive corrections and additions that I can incorporate into the
package.

6.4 Acknowledgments

This material is based upon work supported at various times by a National Science Founda-
tion Graduate Research Fellowship, by NSF Grant DMS-9116110, by DOE grant DE-FG02-
9YER25199, and by an NSF Mathematical Sciences Postdoctoral Research Fellowship. In
particular this work would not have been possible without the NSF.8

I would like to thank Nick Trefethen for leading me to this project, guiding and encourag-
ing me throughout its development, and serving as Chief Beta-Tester-For-Life. I also thank
Steve Vavasis for his insights leading to the cross-ratio formulations.

8Any opinions, findings, conclusions or recommendations expressed in this publication by the author do not
necessarily reflect the views of the National Science Foundation.

21



7 More examples

p = polygon([1+i,-1+i,-1-i,1-i]);
f = diskmap(p);
f = center(f,0);
plot(exp(i*linspace(0,2*pi,180)));
hold on, axis equal
[X,Y] = meshgrid((-4:4)/5,(-100:100)/100);
plot(evalinv(f,X+i*Y),’k’)
[X,Y] = meshgrid((-100:100)/100,(-4:4)/5);
plot(evalinv(f,X’+i*Y’),’k’)

p = polygon([i,-i,Inf],[3/2,1/2,-1]);
f = hplmap(p);
axis([-3 3 -1.5 4.5]), hold on
plot(f,0.7*(-10:6),0.7*(1:12))

p = polygon([-4-i,4-i,4+i,-4+i]);
f = diskmap(p);
f = center(f,0);
plot(f,0.2*(1:4),angle(prevertex(f)))

w = [Inf,-1-i,-2.5-i,Inf,2.4-3.3i,...
Inf,2.4-1.3i,Inf,-1+i,-2.5+i];

alf = [0,2,1,-.85,2,0,2,-1.15,2,1];
p = polygon(w,alf);
f1 = stripmap(p,[6 8]);
f2 = stripmap(p,[4 8]);
axis([-4.3 5.7 -6.15 3.85]), hold on
plot(f1,0,8)
pause, cla
plot(f2,0,8)

22



p = polygon([-5-i,-5-3i,5-3i,5+i,5+3i,-5+3i]);
f = rectmap(p,[1 2 4 5]);
plot(f)

p = i*polygon([-0.5,1-1.5i,-0.5,0.5+2i]);
f = extermap(p);
axis([-3.05 2.8 -2.3 2.5]), hold on
plot(f,(4:9)/10,0)

f = rectmap(drawpoly);
r = rectangle(f);
M = pi/max(imag(r));
a = exp(min(real(r))*M);
b = exp(max(real(r))*M);
rad = log(linspace(a,b,8))/M;
plot(f,rad(2:end-1),6);
H = copyobj(get(gca,’child’),gca);
for n=1:length(H),

set(H(n),’xdata’,-get(H(n),’xdata’))
end
set(H,’linesty’,’--’), axis auto

23



p = polygon([1+i,1+2i,Inf,-.705+.971i,...
Inf,-1-i,Inf,.705-.971i,Inf],...
[2,1,-.3,2,-.7,2,-.3,2,-.7]);

f = center(diskmap(p),0);
axis(5.5*[-1 1 -1 1]), hold on
h = plot(f,0.7:0.05:0.95,0);
for n=1:length(h)

w = (get(h(n),’xd’) + i*get(h(n),’yd’));
set(h(n),’xd’,real(1./w),’yd’,imag(1./w))

end
h = findobj(gca,’color’,[0 0 1]);
for n=1:length(h)

w = get(h(n),’xd’) + i*get(h(n),’yd’);
if abs(w(1)) > abs(w(2)), w=w([2 1]); end
u1 = w(1) + linspace(0,2*diff(w),100);
u2 = w(1) + linspace(2*diff(w),100*diff(w),100);
plot(1./[u1 u2]);

end
delete(h)
axis auto

p = polygon([i 0 2 2+i]);
theta = [1/2 1/6 1/2 1/6];
f1 = hplmap(p);
thetas = theta([end 1:end-1]);
alf = -mod(theta-thetas,1)+1;
f2 = hplmap(prevertex(f1),alf,i);
Q = polygon(f2); w = vertex(Q);
m = min(imag(w)); M = max(imag(w));
a = max(real(w)); t = [.01 1:99 99.99]/100;
plot(p), hold on
[X,Y] = meshgrid((1:15)*a/16,t*m);
plot(f1(evalinv(f2,X+i*(Y+M*X/a))),’k’)
[X,Y] = meshgrid(t*a,(1:15)*m/16);
plot(f1(evalinv(f2,X’+i*(Y’+M*X’/a))),’k’)

f = extermap(drawpoly);
phi = faber(f,8);
[x,y] = meshgrid(linspace(-4,4,80));
w = polyval(phi{9},x+i*y);
contour(x,y,abs(w),[1 1]);
hold on
plot(polygon(f))

24



References

[CB90] R. V. Churchill and J. W. Brown. Complex Variables and Applications. McGraw-Hill,
5th edition, 1990.

[Däp88] H. Däppen. Die Schwarz–Christoffel-Abbildung für zweifach zusammenhängende
Gebiete mit Anwendungen. PhD thesis, ETH Zürich, 1988.

[Dav79] R. T. Davis. Numerical methods for coordinate generation based on Schwarz–
Christoffel transformations. In 4th AIAA Comput. Fluid Dynamics Conf., pages 1–
15, Williamsburg, VA, 1979.

[Dri96] T. A. Driscoll. A MATLAB toolbox for Schwarz–Christoffel mapping. ACM Trans.
Math. Soft., 22:168–186, 1996.

[DT02] T. A. Driscoll and L. N. Trefethen. Schwarz–Christoffel Mapping. Cambridge Uni-
versity Press, Cambridge, UK, 2002.

[DV98] T. A. Driscoll and S. A. Vavasis. Numerical conformal mapping using cross-ratios
and Delaunay triangulation. SIAM J. Sci. Comput., 19:1783–1803, 1998.

[Ell86] S. W. Ellacott. A survey of Faber methods in numerical approximation. Comp. &
Maths. with Appls., 12B:1103–1107, 1986.

[Flo86] J. M. Floryan. Conformal-mapping-based coordinate generation method for flows in
periodic configurations. J. Comput. Phys., 62:221–247, 1986.

[FZ87] J. M. Floryan and C. Zemach. Schwarz–Christoffel mappings: A general approach.
J. Comput. Phys., 72:347–371, 1987.

[Hen74] P. Henrici. Applied and Computational Complex Analysis: Power Series, Integration,
Conformal Mapping, Location of Zeros, volume 1. Wiley, 1974.

[Hen86] P. Henrici. Applied and Computational Complex Analysis: Discrete Fourier Analysis,
Cauchy Integrals, Construction of Conformal Maps, Univalent Functions, volume 3.
Wiley, 1986.

[Hoe86] M. Hoekstra. Coordinate generation in symmetrical interior, exterior, or annular 2D
domains, using a generalized Schwarz–Christoffel transformation. In J. Hauser and
C. Taylor, editors, Numerical Grid Generation in Computational Fluid Mechanics.
Pineridge Press, 1986.

[Hou90] D. M. Hough. User’s guide to CONFPACK. ETH Zürich IPS Research Report 90-11,
1990.

[How90] L. H. Howell. Computation of Conformal Maps by Modified Schwarz–Christoffel
Transformations. PhD thesis, MIT, 1990.

[How94] L. H. Howell. Schwarz–Christoffel methods for multiply-elongated regions. In Proc.
of the 14th IMACS World Congress on Computation and Applied Mathematics, 1994.

25



[HT90] L. H. Howell and L. N. Trefethen. A modified Schwarz–Christoffel transformation
for elongated regions. SIAM J. Sci. Stat. Comput., 11:928–949, 1990.

[Hu95] C. Hu. User’s guide to DSCPACK. Nat. Inst. Aviation Res. 95-1, Wichita State Univ.,
1995.

[Mar65] A. I. Markushevich. Theory of Functions of a Complex Variable. Prentice–Hall,
Englewood Cliffs, NJ, 1965. Second edition issued in 1985 by Chelsea, New York.

[Pea91] K. Pearce. A constructive method for numerically computing conformal mappings
for gearlike domains. SIAM J. Sci. Stat. Comput., 12:231–246, 1991.

[Rep79] K. Reppe. Berechnung von Magnetfeldern mit Hilfe der konformen Abbildung durch
numerische Integration der Abbildungsfunktion von Schwarz–Christoffel. Siemens
Forsch. u. Entwickl. Ber., 8:190–195, 1979.

[SD85] K. P. Sridhar and R. T. Davis. A Schwarz–Christoffel method for generating two-
dimensional flow grids. J. Fluids Eng., 107:330–337, 1985.

[SS93] E. B. Saff and A. D. Snider. Fundamentals of Complex Analysis. Prentice Hall, 2nd
edition, 1993.

[SV93] G. Starke and R. S. Varga. A hybrid Arnoldi–Faber iterative method for nonsymmet-
ric systems of linear equations. Numer. Math., 64:213–240, 1993.

[TD98] L. N. Trefethen and T. A. Driscoll. Schwarz-Christoffel mapping in the computer
era. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin,
1998), volume 1998, pages 533–542 (electronic), 1998.

[Tre80] L. N. Trefethen. Numerical computation of the Schwarz–Christoffel transformation.
SIAM J. Sci. Stat. Comput., 1:82–102, 1980.

[Tre86] L. N. Trefethen, editor. Numerical Conformal Mapping. North-Holland, Amsterdam,
1986. Reprint of J. Comput. Appl. Math. 14 (1986), no. 1–2.

[Tre89] L. N. Trefethen. SCPACK user’s guide. MIT Numerical Analysis Report 89-2, 1989.

[Tre93] L. N. Trefethen. Schwarz–Christoffel mapping in the 1980’s. Cornell University
Computer Science Department Technical Report TR 93-1381, 1993.

[Woo61] L. C. Woods. The Theory of Subsonic Plane Flow. Cambridge Univ. Press, 1961.

26


	Executive summary
	Introduction
	Schwarz--Christoffel mapping
	Toolbox features
	Requirements
	Obtaining and installing the SC Toolbox
	A simple example

	Graphical interfaces
	Toolbox interface
	Polygon Editor
	Restricting vertex placement


	Command-line interface
	Polygons
	SC maps
	Evaluation
	Plotting

	Cross-ratio (CR) formulations
	Crowding
	Usage
	Rectified maps

	Möbius transformations
	Composite maps
	Low-level access

	Applications
	Laplace's equation
	Faber polynomials

	Additional notes
	Slow convergence
	Further reading
	Suggestions and bug reports
	Acknowledgments

	More examples

