/* Cheby.f -- translated by f2c (version of 20 August 1993 13:15:44). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static real c_b5 = (float)-1.; static real c_b6 = (float)1.; /* Subroutine */ int cheby_(n, b, x, work, ldw, iter, resid, matvec, psolve, info) integer *n; real *b, *x, *work; integer *ldw, *iter; real *resid; /* Subroutine */ int (*matvec) (), (*psolve) (); integer *info; { /* System generated locals */ integer work_dim1, work_offset; real r__1; /* Local variables */ static real beta, bnrm2; extern doublereal snrm2_(); static real c, d; static integer p, r; static real alpha; static integer z, maxit; extern /* Subroutine */ int scopy_(), saxpy_(), geteig_(); static real eigmin, eigmax, tol; /* -- Iterative template routine -- */ /* Univ. of Tennessee and Oak Ridge National Laboratory */ /* October 1, 1993 */ /* Details of this algorithm are described in "Templates for the */ /* Solution of Linear Systems: Building Blocks for Iterative */ /* Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra, */ /* Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications, */ /* 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps). */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* .. Function Arguments .. */ /* Purpose */ /* ======= */ /* CHEBY solves the linear system Ax = b using the Chebyshev iterative */ /* method with preconditioning. This version requires explicit */ /* knowledge of the maximum and minimum eigenvalues. Note that these */ /* eigenvalues must be positive real numbers, which is the case for the */ /* symmetric positive definite system. */ /* Convergence test: ( norm( b - A*x ) / norm( b ) ) < TOL. */ /* For other measures, see the above reference. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* On entry, the dimension of the matrix. */ /* Unchanged on exit. */ /* B (input) REAL array, dimension N. */ /* On entry, right hand side vector B. */ /* Unchanged on exit. */ /* On input, the initial guess. This is commonly set to */ /* the zero vector. */ /* On exit, if INFO = 0, the iterated approximate solution. */ /* WORK (workspace) REAL array, dimension (LDW,3). */ /* Workspace for residual, direction vector, etc. */ /* LDW (input) INTEGER */ /* The leading dimension of the array WORK. LDW >= max(1,N). */ /* ITER (input/output) INTEGER */ /* On input, the maximum iterations to be performed. */ /* On output, actual number of iterations performed. */ /* RESID (input/output) REAL */ /* On input, the allowable convergence measure for */ /* norm( b - A*x ) / norm( b ). */ /* On output, the final value of this measure. */ /* MATVEC (external subroutine) */ /* The user must provide a subroutine to perform the */ /* matrix-vector product */ /* y := alpha*A*x + beta*y, */ /* where alpha and beta are scalars, x and y are vectors, */ /* and A is a matrix. Vector x must remain unchanged. */ /* The solution is over-written on vector y. */ /* The call is: */ /* CALL MATVEC( ALPHA, X, BETA, Y ) */ /* The matrix is passed into the routine in a common block. */ /* PSOLVE (external subroutine) */ /* The user must provide a subroutine to perform the */ /* preconditioner solve routine for the linear system */ /* M*x = b, */ /* where x and b are vectors, and M a matrix. Vector b must */ /* remain unchanged. */ /* The solution is over-written on vector x. */ /* The call is: */ /* CALL PSOLVE( X, B ) */ /* The preconditioner is passed into the routine in a common block .*/ /* INFO (output) INTEGER */ /* = 0: Successful exit. Iterated approximate solution returned. */ /* > 0: Convergence to tolerance not achieved. This will be */ /* set to the number of iterations performed. */ /* < 0: Illegal input parameter, or breakdown occurred */ /* during iteration. */ /* Illegal parameter: */ /* -1: matrix dimension N < 0 */ /* -2: LDW < N */ /* -3: Maximum number of iterations ITER <= 0. */ /* BLAS CALLS: SAXPY, SCOPY, SNRM2 */ /* ============================================================ */ /* .. */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Routines .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ work_dim1 = *ldw; work_offset = work_dim1 + 1; work -= work_offset; --x; --b; /* Function Body */ *info = 0; /* Test the input parameters. */ if (*n < 0) { *info = -1; } else if (*ldw < max(1,*n)) { *info = -2; } else if (*iter <= 0) { *info = -3; } if (*info != 0) { return 0; } maxit = *iter; tol = *resid; /* Get extremal eigenvalues. */ geteig_(&work[work_offset], ldw, &eigmax, &eigmin); /* Alias workspace columns. */ r = 1; p = 2; z = 3; /* Set initial residual. */ scopy_(n, &b[1], &c__1, &work[r * work_dim1 + 1], &c__1); if (snrm2_(n, &x[1], &c__1) != (float)0.) { (*matvec)(&c_b5, &x[1], &c_b6, &work[r * work_dim1 + 1]); if (snrm2_(n, &work[r * work_dim1 + 1], &c__1) < tol) { goto L30; } } bnrm2 = snrm2_(n, &b[1], &c__1); if (bnrm2 == (float)0.) { bnrm2 = (float)1.; } /* Initialize ellipse parameters. */ c = (eigmax - eigmin) / (float)2.; d = (eigmax + eigmin) / (float)2.; *iter = 0; L10: /* Perform Chebyshev iteration. */ ++(*iter); (*psolve)(&work[z * work_dim1 + 1], &work[r * work_dim1 + 1]); if (*iter > 1) { /* Computing 2nd power */ r__1 = c * alpha / (float)2.; beta = r__1 * r__1; alpha = (float)1. / (d - beta); saxpy_(n, &beta, &work[p * work_dim1 + 1], &c__1, &work[z * work_dim1 + 1], &c__1); scopy_(n, &work[z * work_dim1 + 1], &c__1, &work[p * work_dim1 + 1], & c__1); } else { scopy_(n, &work[z * work_dim1 + 1], &c__1, &work[p * work_dim1 + 1], & c__1); alpha = (float)2. / d; } /* Compute new approximation vector X; check accuracy. */ saxpy_(n, &alpha, &work[p * work_dim1 + 1], &c__1, &x[1], &c__1); r__1 = -(doublereal)alpha; (*matvec)(&r__1, &work[p * work_dim1 + 1], &c_b6, &work[r * work_dim1 + 1] ); *resid = snrm2_(n, &work[r * work_dim1 + 1], &c__1) / bnrm2; if (*resid <= tol) { goto L30; } if (*iter == maxit) { goto L20; } goto L10; L20: /* Iteration fails. */ *info = 1; return 0; L30: /* Iteration successful; return. */ return 0; /* End of CHEBY.f */ } /* cheby_ */