subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag,wa1, * wa2) integer n,ldr integer ipvt(n) real delta,par real r(ldr,n),diag(n),qtb(n),x(n),sdiag(n),wa1(n),wa2(n) c ********** c c subroutine lmpar c c given an m by n matrix a, an n by n nonsingular diagonal c matrix d, an m-vector b, and a positive number delta, c the problem is to determine a value for the parameter c par such that if x solves the system c c a*x = b , sqrt(par)*d*x = 0 , c c in the least squares sense, and dxnorm is the euclidean c norm of d*x, then either par is zero and c c (dxnorm-delta) .le. 0.1*delta , c c or par is positive and c c abs(dxnorm-delta) .le. 0.1*delta . c c this subroutine completes the solution of the problem c if it is provided with the necessary information from the c qr factorization, with column pivoting, of a. that is, if c a*p = q*r, where p is a permutation matrix, q has orthogonal c columns, and r is an upper triangular matrix with diagonal c elements of nonincreasing magnitude, then lmpar expects c the full upper triangle of r, the permutation matrix p, c and the first n components of (q transpose)*b. on output c lmpar also provides an upper triangular matrix s such that c c t t t c p *(a *a + par*d*d)*p = s *s . c c s is employed within lmpar and may be of separate interest. c c only a few iterations are generally needed for convergence c of the algorithm. if, however, the limit of 10 iterations c is reached, then the output par will contain the best c value obtained so far. c c the subroutine statement is c c subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag, c wa1,wa2) c c where c c n is a positive integer input variable set to the order of r. c c r is an n by n array. on input the full upper triangle c must contain the full upper triangle of the matrix r. c on output the full upper triangle is unaltered, and the c strict lower triangle contains the strict upper triangle c (transposed) of the upper triangular matrix s. c c ldr is a positive integer input variable not less than n c which specifies the leading dimension of the array r. c c ipvt is an integer input array of length n which defines the c permutation matrix p such that a*p = q*r. column j of p c is column ipvt(j) of the identity matrix. c c diag is an input array of length n which must contain the c diagonal elements of the matrix d. c c qtb is an input array of length n which must contain the first c n elements of the vector (q transpose)*b. c c delta is a positive input variable which specifies an upper c bound on the euclidean norm of d*x. c c par is a nonnegative variable. on input par contains an c initial estimate of the levenberg-marquardt parameter. c on output par contains the final estimate. c c x is an output array of length n which contains the least c squares solution of the system a*x = b, sqrt(par)*d*x = 0, c for the output par. c c sdiag is an output array of length n which contains the c diagonal elements of the upper triangular matrix s. c c wa1 and wa2 are work arrays of length n. c c subprograms called c c minpack-supplied ... spmpar,enorm,qrsolv c c fortran-supplied ... abs,amax1,amin1,sqrt c c argonne national laboratory. minpack project. march 1980. c burton s. garbow, kenneth e. hillstrom, jorge j. more c c ********** integer i,iter,j,jm1,jp1,k,l,nsing real dxnorm,dwarf,fp,gnorm,parc,parl,paru,p1,p001,sum,temp,zero real spmpar,enorm data p1,p001,zero /1.0e-1,1.0e-3,0.0e0/ c c dwarf is the smallest positive magnitude. c dwarf = spmpar(2) c c compute and store in x the gauss-newton direction. if the c jacobian is rank-deficient, obtain a least squares solution. c nsing = n do 10 j = 1, n wa1(j) = qtb(j) if (r(j,j) .eq. zero .and. nsing .eq. n) nsing = j - 1 if (nsing .lt. n) wa1(j) = zero 10 continue if (nsing .lt. 1) go to 50 do 40 k = 1, nsing j = nsing - k + 1 wa1(j) = wa1(j)/r(j,j) temp = wa1(j) jm1 = j - 1 if (jm1 .lt. 1) go to 30 do 20 i = 1, jm1 wa1(i) = wa1(i) - r(i,j)*temp 20 continue 30 continue 40 continue 50 continue do 60 j = 1, n l = ipvt(j) x(l) = wa1(j) 60 continue c c initialize the iteration counter. c evaluate the function at the origin, and test c for acceptance of the gauss-newton direction. c iter = 0 do 70 j = 1, n wa2(j) = diag(j)*x(j) 70 continue dxnorm = enorm(n,wa2) fp = dxnorm - delta if (fp .le. p1*delta) go to 220 c c if the jacobian is not rank deficient, the newton c step provides a lower bound, parl, for the zero of c the function. otherwise set this bound to zero. c parl = zero if (nsing .lt. n) go to 120 do 80 j = 1, n l = ipvt(j) wa1(j) = diag(l)*(wa2(l)/dxnorm) 80 continue do 110 j = 1, n sum = zero jm1 = j - 1 if (jm1 .lt. 1) go to 100 do 90 i = 1, jm1 sum = sum + r(i,j)*wa1(i) 90 continue 100 continue wa1(j) = (wa1(j) - sum)/r(j,j) 110 continue temp = enorm(n,wa1) parl = ((fp/delta)/temp)/temp 120 continue c c calculate an upper bound, paru, for the zero of the function. c do 140 j = 1, n sum = zero do 130 i = 1, j sum = sum + r(i,j)*qtb(i) 130 continue l = ipvt(j) wa1(j) = sum/diag(l) 140 continue gnorm = enorm(n,wa1) paru = gnorm/delta if (paru .eq. zero) paru = dwarf/amin1(delta,p1) c c if the input par lies outside of the interval (parl,paru), c set par to the closer endpoint. c par = amax1(par,parl) par = amin1(par,paru) if (par .eq. zero) par = gnorm/dxnorm c c beginning of an iteration. c 150 continue iter = iter + 1 c c evaluate the function at the current value of par. c if (par .eq. zero) par = amax1(dwarf,p001*paru) temp = sqrt(par) do 160 j = 1, n wa1(j) = temp*diag(j) 160 continue call qrsolv(n,r,ldr,ipvt,wa1,qtb,x,sdiag,wa2) do 170 j = 1, n wa2(j) = diag(j)*x(j) 170 continue dxnorm = enorm(n,wa2) temp = fp fp = dxnorm - delta c c if the function is small enough, accept the current value c of par. also test for the exceptional cases where parl c is zero or the number of iterations has reached 10. c if (abs(fp) .le. p1*delta * .or. parl .eq. zero .and. fp .le. temp * .and. temp .lt. zero .or. iter .eq. 10) go to 220 c c compute the newton correction. c do 180 j = 1, n l = ipvt(j) wa1(j) = diag(l)*(wa2(l)/dxnorm) 180 continue do 210 j = 1, n wa1(j) = wa1(j)/sdiag(j) temp = wa1(j) jp1 = j + 1 if (n .lt. jp1) go to 200 do 190 i = jp1, n wa1(i) = wa1(i) - r(i,j)*temp 190 continue 200 continue 210 continue temp = enorm(n,wa1) parc = ((fp/delta)/temp)/temp c c depending on the sign of the function, update parl or paru. c if (fp .gt. zero) parl = amax1(parl,par) if (fp .lt. zero) paru = amin1(paru,par) c c compute an improved estimate for par. c par = amax1(parl,par+parc) c c end of an iteration. c go to 150 220 continue c c termination. c if (iter .eq. 0) par = zero return c c last card of subroutine lmpar. c end