*DECK DEABM SUBROUTINE DEABM (F, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID, + RWORK, LRW, IWORK, LIW, RPAR, IPAR) C***BEGIN PROLOGUE DEABM C***PURPOSE Solve an initial value problem in ordinary differential C equations using an Adams-Bashforth method. C***LIBRARY SLATEC (DEPAC) C***CATEGORY I1A1B C***TYPE SINGLE PRECISION (DEABM-S, DDEABM-D) C***KEYWORDS ADAMS-BASHFORTH METHOD, DEPAC, INITIAL VALUE PROBLEMS, C ODE, ORDINARY DIFFERENTIAL EQUATIONS, PREDICTOR-CORRECTOR C***AUTHOR Shampine, L. F., (SNLA) C Watts, H. A., (SNLA) C***DESCRIPTION C C This is the Adams code in the package of differential equation C solvers DEPAC, consisting of the codes DERKF, DEABM, and DEBDF. C Design of the package was by L. F. Shampine and H. A. Watts. C It is documented in C SAND79-2374 , DEPAC - Design of a User Oriented Package of ODE C Solvers. C DEABM is a driver for a modification of the code ODE written by C L. F. Shampine and M. K. Gordon C Sandia Laboratories C Albuquerque, New Mexico 87185 C C ********************************************************************** C ** DEPAC PACKAGE OVERVIEW ** C ************************************************** C C You have a choice of three differential equation solvers from C DEPAC. The following brief descriptions are meant to aid you C in choosing the most appropriate code for your problem. C C DERKF is a fifth order Runge-Kutta code. It is the simplest of C the three choices, both algorithmically and in the use of the C code. DERKF is primarily designed to solve non-stiff and mild- C ly stiff differential equations when derivative evaluations are C not expensive. It should generally not be used to get high C accuracy results nor answers at a great many specific points. C Because DERKF has very low overhead costs, it will usually C result in the least expensive integration when solving C problems requiring a modest amount of accuracy and having C equations that are not costly to evaluate. DERKF attempts to C discover when it is not suitable for the task posed. C C DEABM is a variable order (one through twelve) Adams code. C Its complexity lies somewhere between that of DERKF and DEBDF. C DEABM is primarily designed to solve non-stiff and mildly stiff C differential equations when derivative evaluations are C expensive, high accuracy results are needed or answers at C many specific points are required. DEABM attempts to discover C when it is not suitable for the task posed. C C DEBDF is a variable order (one through five) backward C differentiation formula code. It is the most complicated of C the three choices. DEBDF is primarily designed to solve stiff C differential equations at crude to moderate tolerances. C If the problem is very stiff at all, DERKF and DEABM will be C quite inefficient compared to DEBDF. However, DEBDF will be C inefficient compared to DERKF and DEABM on non-stiff problems C because it uses much more storage, has a much larger overhead, C and the low order formulas will not give high accuracies C efficiently. C C The concept of stiffness cannot be described in a few words. C If you do not know the problem to be stiff, try either DERKF C or DEABM. Both of these codes will inform you of stiffness C when the cost of solving such problems becomes important. C C ********************************************************************** C ** ABSTRACT ** C ************** C C Subroutine DEABM uses the Adams-Bashforth-Moulton predictor- C corrector formulas of orders one through twelve to integrate a C system of NEQ first order ordinary differential equations of the C form C DU/DX = F(X,U) C when the vector Y(*) of initial values for U(*) at X=T is given. The C subroutine integrates from T to TOUT. It is easy to continue the C integration to get results at additional TOUT. This is the interval C mode of operation. It is also easy for the routine to return with C the solution at each intermediate step on the way to TOUT. This is C the intermediate-output mode of operation. C C DEABM uses subprograms DES, STEPS, SINTRP, HSTART, HVNRM, R1MACH and C the error handling routine XERMSG. The only machine dependent C parameters to be assigned appear in R1MACH. C C ********************************************************************** C ** DESCRIPTION OF THE ARGUMENTS TO DEABM (AN OVERVIEW) ** C ********************************************************* C C The parameters are C C F -- This is the name of a subroutine which you provide to C define the differential equations. C C NEQ -- This is the number of (first order) differential C equations to be integrated. C C T -- This is a value of the independent variable. C C Y(*) -- This array contains the solution components at T. C C TOUT -- This is a point at which a solution is desired. C C INFO(*) -- The basic task of the code is to integrate the C differential equations from T to TOUT and return an C answer at TOUT. INFO(*) is an integer array which is used C to communicate exactly how you want this task to be C carried out. C C RTOL, ATOL -- These quantities represent relative and absolute C error tolerances which you provide to indicate how C accurately you wish the solution to be computed. You may C choose them to be both scalars or else both vectors. C C IDID -- This scalar quantity is an indicator reporting what C the code did. You must monitor this integer variable to C decide what action to take next. C C RWORK(*), LRW -- RWORK(*) is a real work array of length LRW C which provides the code with needed storage space. C C IWORK(*), LIW -- IWORK(*) is an integer work array of length LIW C which provides the code with needed storage space and an C across call flag. C C RPAR, IPAR -- These are real and integer parameter arrays which C you can use for communication between your calling C program and the F subroutine. C C Quantities which are used as input items are C NEQ, T, Y(*), TOUT, INFO(*), C RTOL, ATOL, RWORK(1), LRW and LIW. C C Quantities which may be altered by the code are C T, Y(*), INFO(1), RTOL, ATOL, C IDID, RWORK(*) and IWORK(*). C C ********************************************************************** C ** INPUT -- WHAT TO DO ON THE FIRST CALL TO DEABM ** C **************************************************** C C The first call of the code is defined to be the start of each new C problem. Read through the descriptions of all the following items, C provide sufficient storage space for designated arrays, set C appropriate variables for the initialization of the problem, and C give information about how you want the problem to be solved. C C C F -- Provide a subroutine of the form C F(X,U,UPRIME,RPAR,IPAR) C to define the system of first order differential equations C which is to be solved. For the given values of X and the C vector U(*)=(U(1),U(2),...,U(NEQ)) , the subroutine must C evaluate the NEQ components of the system of differential C equations DU/DX = F(X,U) and store the derivatives in C array UPRIME(*), that is, UPRIME(I) = * DU(I)/DX * for C equations I=1,...,NEQ. C C Subroutine F must not alter X or U(*). You must declare C the name F in an external statement in your program that C calls DEABM. You must dimension U and UPRIME in F. C C RPAR and IPAR are real and integer parameter arrays which C you can use for communication between your calling program C and subroutine F. They are not used or altered by DEABM. C If you do not need RPAR or IPAR, ignore these parameters C by treating them as dummy arguments. If you do choose to C use them, dimension them in your calling program and in F C as arrays of appropriate length. C C NEQ -- Set it to the number of differential equations. C (NEQ .GE. 1) C C T -- Set it to the initial point of the integration. C You must use a program variable for T because the code C changes its value. C C Y(*) -- Set this vector to the initial values of the NEQ solution C components at the initial point. You must dimension Y at C least NEQ in your calling program. C C TOUT -- Set it to the first point at which a solution C is desired. You can take TOUT = T, in which case the code C will evaluate the derivative of the solution at T and C return. Integration either forward in T (TOUT .GT. T) C or backward in T (TOUT .LT. T) is permitted. C C The code advances the solution from T to TOUT using C step sizes which are automatically selected so as to C achieve the desired accuracy. If you wish, the code will C return with the solution and its derivative following C each intermediate step (intermediate-output mode) so that C you can monitor them, but you still must provide TOUT in C accord with the basic aim of the code. C C The first step taken by the code is a critical one C because it must reflect how fast the solution changes near C the initial point. The code automatically selects an C initial step size which is practically always suitable for C the problem. By using the fact that the code will not C step past TOUT in the first step, you could, if necessary, C restrict the length of the initial step size. C C For some problems it may not be permissible to integrate C past a point TSTOP because a discontinuity occurs there C or the solution or its derivative is not defined beyond C TSTOP. When you have declared a TSTOP point (see INFO(4) C and RWORK(1)), you have told the code not to integrate C past TSTOP. In this case any TOUT beyond TSTOP is invalid C input. C C INFO(*) -- Use the INFO array to give the code more details about C how you want your problem solved. This array should be C dimensioned of length 15 to accommodate other members of C DEPAC or possible future extensions, though DEABM uses C only the first four entries. You must respond to all of C the following items which are arranged as questions. The C simplest use of the code corresponds to answering all C questions as YES ,i.e. setting all entries of INFO to 0. C C INFO(1) -- This parameter enables the code to initialize C itself. You must set it to indicate the start of every C new problem. C C **** Is this the first call for this problem ... C YES -- Set INFO(1) = 0 C NO -- Not applicable here. C See below for continuation calls. **** C C INFO(2) -- How much accuracy you want of your solution C is specified by the error tolerances RTOL and ATOL. C The simplest use is to take them both to be scalars. C To obtain more flexibility, they can both be vectors. C The code must be told your choice. C C **** Are both error tolerances RTOL, ATOL scalars ... C YES -- Set INFO(2) = 0 C and input scalars for both RTOL and ATOL C NO -- Set INFO(2) = 1 C and input arrays for both RTOL and ATOL **** C C INFO(3) -- The code integrates from T in the direction C of TOUT by steps. If you wish, it will return the C computed solution and derivative at the next C intermediate step (the intermediate-output mode) or C TOUT, whichever comes first. This is a good way to C proceed if you want to see the behavior of the solution. C If you must have solutions at a great many specific C TOUT points, this code will compute them efficiently. C C **** Do you want the solution only at C TOUT (and not at the next intermediate step) ... C YES -- Set INFO(3) = 0 C NO -- Set INFO(3) = 1 **** C C INFO(4) -- To handle solutions at a great many specific C values TOUT efficiently, this code may integrate past C TOUT and interpolate to obtain the result at TOUT. C Sometimes it is not possible to integrate beyond some C point TSTOP because the equation changes there or it is C not defined past TSTOP. Then you must tell the code C not to go past. C C **** Can the integration be carried out without any C restrictions on the independent variable T ... C YES -- Set INFO(4)=0 C NO -- Set INFO(4)=1 C and define the stopping point TSTOP by C setting RWORK(1)=TSTOP **** C C RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL) C error tolerances to tell the code how accurately you want C the solution to be computed. They must be defined as C program variables because the code may change them. You C have two choices -- C both RTOL and ATOL are scalars. (INFO(2)=0) C both RTOL and ATOL are vectors. (INFO(2)=1) C In either case all components must be non-negative. C C The tolerances are used by the code in a local error test C at each step which requires roughly that C ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL C for each vector component. C (More specifically, a Euclidean norm is used to measure C the size of vectors, and the error test uses the magnitude C of the solution at the beginning of the step.) C C The true (global) error is the difference between the true C solution of the initial value problem and the computed C approximation. Practically all present day codes, C including this one, control the local error at each step C and do not even attempt to control the global error C directly. Roughly speaking, they produce a solution Y(T) C which satisfies the differential equations with a C residual R(T), DY(T)/DT = F(T,Y(T)) + R(T) , C and, almost always, R(T) is bounded by the error C tolerances. Usually, but not always, the true accuracy of C the computed Y is comparable to the error tolerances. This C code will usually, but not always, deliver a more accurate C solution if you reduce the tolerances and integrate again. C By comparing two such solutions you can get a fairly C reliable idea of the true error in the solution at the C bigger tolerances. C C Setting ATOL=0.0 results in a pure relative error test on C that component. Setting RTOL=0.0 results in a pure abso- C lute error test on that component. A mixed test with non- C zero RTOL and ATOL corresponds roughly to a relative error C test when the solution component is much bigger than ATOL C and to an absolute error test when the solution component C is smaller than the threshold ATOL. C C Proper selection of the absolute error control parameters C ATOL requires you to have some idea of the scale of the C solution components. To acquire this information may mean C that you will have to solve the problem more than once. C In the absence of scale information, you should ask for C some relative accuracy in all the components (by setting C RTOL values non-zero) and perhaps impose extremely small C absolute error tolerances to protect against the danger of C a solution component becoming zero. C C The code will not attempt to compute a solution at an C accuracy unreasonable for the machine being used. It will C advise you if you ask for too much accuracy and inform C you as to the maximum accuracy it believes possible. C C RWORK(*) -- Dimension this real work array of length LRW in your C calling program. C C RWORK(1) -- If you have set INFO(4)=0, you can ignore this C optional input parameter. Otherwise you must define a C stopping point TSTOP by setting RWORK(1) = TSTOP. C (for some problems it may not be permissible to integrate C past a point TSTOP because a discontinuity occurs there C or the solution or its derivative is not defined beyond C TSTOP.) C C LRW -- Set it to the declared length of the RWORK array. C You must have LRW .GE. 130+21*NEQ C C IWORK(*) -- Dimension this integer work array of length LIW in C your calling program. C C LIW -- Set it to the declared length of the IWORK array. C You must have LIW .GE. 51 C C RPAR, IPAR -- These are parameter arrays, of real and integer C type, respectively. You can use them for communication C between your program that calls DEABM and the F C subroutine. They are not used or altered by DEABM. If C you do not need RPAR or IPAR, ignore these parameters by C treating them as dummy arguments. If you do choose to use C them, dimension them in your calling program and in F as C arrays of appropriate length. C C ********************************************************************** C ** OUTPUT -- AFTER ANY RETURN FROM DEABM ** C ******************************************* C C The principal aim of the code is to return a computed solution at C TOUT, although it is also possible to obtain intermediate results C along the way. To find out whether the code achieved its goal C or if the integration process was interrupted before the task was C completed, you must check the IDID parameter. C C C T -- The solution was successfully advanced to the C output value of T. C C Y(*) -- Contains the computed solution approximation at T. C You may also be interested in the approximate derivative C of the solution at T. It is contained in C RWORK(21),...,RWORK(20+NEQ). C C IDID -- Reports what the code did C C *** Task Completed *** C reported by positive values of IDID C C IDID = 1 -- A step was successfully taken in the C intermediate-output mode. The code has not C yet reached TOUT. C C IDID = 2 -- The integration to TOUT was successfully C completed (T=TOUT) by stepping exactly to TOUT. C C IDID = 3 -- The integration to TOUT was successfully C completed (T=TOUT) by stepping past TOUT. C Y(*) is obtained by interpolation. C C *** Task Interrupted *** C reported by negative values of IDID C C IDID = -1 -- A large amount of work has been expended. C (500 steps attempted) C C IDID = -2 -- The error tolerances are too stringent. C C IDID = -3 -- The local error test cannot be satisfied C because you specified a zero component in ATOL C and the corresponding computed solution C component is zero. Thus, a pure relative error C test is impossible for this component. C C IDID = -4 -- The problem appears to be stiff. C C IDID = -5,-6,-7,..,-32 -- Not applicable for this code C but used by other members of DEPAC or possible C future extensions. C C *** Task Terminated *** C reported by the value of IDID=-33 C C IDID = -33 -- The code has encountered trouble from which C it cannot recover. A message is printed C explaining the trouble and control is returned C to the calling program. For example, this C occurs when invalid input is detected. C C RTOL, ATOL -- These quantities remain unchanged except when C IDID = -2. In this case, the error tolerances have been C increased by the code to values which are estimated to be C appropriate for continuing the integration. However, the C reported solution at T was obtained using the input values C of RTOL and ATOL. C C RWORK, IWORK -- Contain information which is usually of no C interest to the user but necessary for subsequent calls. C However, you may find use for C C RWORK(11)--Which contains the step size H to be C attempted on the next step. C C RWORK(12)--If the tolerances have been increased by the C code (IDID = -2) , they were multiplied by the C value in RWORK(12). C C RWORK(13)--Which contains the current value of the C independent variable, i.e. the farthest point C integration has reached. This will be dif- C ferent from T only when interpolation has been C performed (IDID=3). C C RWORK(20+I)--Which contains the approximate derivative of C the solution component Y(I). In DEABM, it is C obtained by calling subroutine F to evaluate C the differential equation using T and Y(*) when C IDID=1 or 2, and by interpolation when IDID=3. C C ********************************************************************** C ** INPUT -- WHAT TO DO TO CONTINUE THE INTEGRATION ** C ** (CALLS AFTER THE FIRST) ** C ***************************************************** C C This code is organized so that subsequent calls to continue the C integration involve little (if any) additional effort on your C part. You must monitor the IDID parameter in order to C determine what to do next. C C Recalling that the principal task of the code is to integrate C from T to TOUT (the interval mode), usually all you will need C to do is specify a new TOUT upon reaching the current TOUT. C C Do not alter any quantity not specifically permitted below, C in particular do not alter NEQ, T, Y(*), RWORK(*), IWORK(*) or C the differential equation in subroutine F. Any such alteration C constitutes a new problem and must be treated as such, i.e. C you must start afresh. C C You cannot change from vector to scalar error control or vice C versa (INFO(2)) but you can change the size of the entries of C RTOL, ATOL. Increasing a tolerance makes the equation easier C to integrate. Decreasing a tolerance will make the equation C harder to integrate and should generally be avoided. C C You can switch from the intermediate-output mode to the C interval mode (INFO(3)) or vice versa at any time. C C If it has been necessary to prevent the integration from going C past a point TSTOP (INFO(4), RWORK(1)), keep in mind that the C code will not integrate to any TOUT beyond the currently C specified TSTOP. Once TSTOP has been reached you must change C the value of TSTOP or set INFO(4)=0. You may change INFO(4) C or TSTOP at any time but you must supply the value of TSTOP in C RWORK(1) whenever you set INFO(4)=1. C C The parameter INFO(1) is used by the code to indicate the C beginning of a new problem and to indicate whether integration C is to be continued. You must input the value INFO(1) = 0 C when starting a new problem. You must input the value C INFO(1) = 1 if you wish to continue after an interrupted task. C Do not set INFO(1) = 0 on a continuation call unless you C want the code to restart at the current T. C C *** Following a Completed Task *** C If C IDID = 1, call the code again to continue the integration C another step in the direction of TOUT. C C IDID = 2 or 3, define a new TOUT and call the code again. C TOUT must be different from T. You cannot change C the direction of integration without restarting. C C *** Following an Interrupted Task *** C To show the code that you realize the task was C interrupted and that you want to continue, you C must take appropriate action and reset INFO(1) = 1 C If C IDID = -1, the code has attempted 500 steps. C If you want to continue, set INFO(1) = 1 and C call the code again. An additional 500 steps C will be allowed. C C IDID = -2, the error tolerances RTOL, ATOL have been C increased to values the code estimates appropriate C for continuing. You may want to change them C yourself. If you are sure you want to continue C with relaxed error tolerances, set INFO(1)=1 and C call the code again. C C IDID = -3, a solution component is zero and you set the C corresponding component of ATOL to zero. If you C are sure you want to continue, you must first C alter the error criterion to use positive values C for those components of ATOL corresponding to zero C solution components, then set INFO(1)=1 and call C the code again. C C IDID = -4, the problem appears to be stiff. It is very C inefficient to solve such problems with DEABM. The C code DEBDF in DEPAC handles this task efficiently. C If you are absolutely sure you want to continue C with DEABM, set INFO(1)=1 and call the code again. C C IDID = -5,-6,-7,..,-32 --- cannot occur with this code C but used by other members of DEPAC or possible C future extensions. C C *** Following a Terminated Task *** C If C IDID = -33, you cannot continue the solution of this C problem. An attempt to do so will result in your C run being terminated. C C ********************************************************************** C C***REFERENCES L. F. Shampine and H. A. Watts, DEPAC - design of a user C oriented package of ODE solvers, Report SAND79-2374, C Sandia Laboratories, 1979. C***ROUTINES CALLED DES, XERMSG C***REVISION HISTORY (YYMMDD) C 800501 DATE WRITTEN C 890831 Modified array declarations. (WRB) C 891024 Changed references from VNORM to HVNRM. (WRB) C 891024 REVISION DATE from Version 3.2 C 891214 Prologue converted to Version 4.0 format. (BAB) C 900510 Convert XERRWV calls to XERMSG calls. (RWC) C 920501 Reformatted the REFERENCES section. (WRB) C***END PROLOGUE DEABM C LOGICAL START,PHASE1,NORND,STIFF,INTOUT C DIMENSION Y(*),INFO(15),RTOL(*),ATOL(*),RWORK(*),IWORK(*), 1 RPAR(*),IPAR(*) C CHARACTER*8 XERN1 CHARACTER*16 XERN3 C EXTERNAL F C C CHECK FOR AN APPARENT INFINITE LOOP C C***FIRST EXECUTABLE STATEMENT DEABM IF ( INFO(1) .EQ. 0 ) IWORK(LIW) = 0 IF (IWORK(LIW) .GE. 5) THEN IF (T .EQ. RWORK(21 + NEQ)) THEN WRITE (XERN3, '(1PE15.6)') T CALL XERMSG ('SLATEC', 'DEABM', * 'AN APPARENT INFINITE LOOP HAS BEEN DETECTED.$$' // * 'YOU HAVE MADE REPEATED CALLS AT T = ' // XERN3 // * ' AND THE INTEGRATION HAS NOT ADVANCED. CHECK THE ' // * 'WAY YOU HAVE SET PARAMETERS FOR THE CALL TO THE ' // * 'CODE, PARTICULARLY INFO(1).', 13, 2) RETURN ENDIF ENDIF C C CHECK LRW AND LIW FOR SUFFICIENT STORAGE ALLOCATION C IDID=0 IF (LRW .LT. 130+21*NEQ) THEN WRITE (XERN1, '(I8)') LRW CALL XERMSG ('SLATEC', 'DEABM', 'THE LENGTH OF THE RWORK ' // * 'ARRAY MUST BE AT LEAST 130 + 21*NEQ.$$' // * 'YOU HAVE CALLED THE CODE WITH LRW = ' // XERN1, 1, 1) IDID=-33 ENDIF C IF (LIW .LT. 51) THEN WRITE (XERN1, '(I8)') LIW CALL XERMSG ('SLATEC', 'DEABM', 'THE LENGTH OF THE IWORK ' // * 'ARRAY MUST BE AT LEAST 51.$$YOU HAVE CALLED THE CODE ' // * 'WITH LIW = ' // XERN1, 2, 1) IDID=-33 ENDIF C C COMPUTE THE INDICES FOR THE ARRAYS TO BE STORED IN THE WORK ARRAY C IYPOUT = 21 ITSTAR = NEQ + 21 IYP = 1 + ITSTAR IYY = NEQ + IYP IWT = NEQ + IYY IP = NEQ + IWT IPHI = NEQ + IP IALPHA = (NEQ*16) + IPHI IBETA = 12 + IALPHA IPSI = 12 + IBETA IV = 12 + IPSI IW = 12 + IV ISIG = 12 + IW IG = 13 + ISIG IGI = 13 + IG IXOLD = 11 + IGI IHOLD = 1 + IXOLD ITOLD = 1 + IHOLD IDELSN = 1 + ITOLD ITWOU = 1 + IDELSN IFOURU = 1 + ITWOU C RWORK(ITSTAR) = T IF (INFO(1) .EQ. 0) GO TO 50 START = IWORK(21) .NE. (-1) PHASE1 = IWORK(22) .NE. (-1) NORND = IWORK(23) .NE. (-1) STIFF = IWORK(24) .NE. (-1) INTOUT = IWORK(25) .NE. (-1) C 50 CALL DES(F,NEQ,T,Y,TOUT,INFO,RTOL,ATOL,IDID,RWORK(IYPOUT), 1 RWORK(IYP),RWORK(IYY),RWORK(IWT),RWORK(IP),RWORK(IPHI), 2 RWORK(IALPHA),RWORK(IBETA),RWORK(IPSI),RWORK(IV), 3 RWORK(IW),RWORK(ISIG),RWORK(IG),RWORK(IGI),RWORK(11), 4 RWORK(12),RWORK(13),RWORK(IXOLD),RWORK(IHOLD), 5 RWORK(ITOLD),RWORK(IDELSN),RWORK(1),RWORK(ITWOU), 5 RWORK(IFOURU),START,PHASE1,NORND,STIFF,INTOUT,IWORK(26), 6 IWORK(27),IWORK(28),IWORK(29),IWORK(30),IWORK(31), 7 IWORK(32),IWORK(33),IWORK(34),IWORK(35),IWORK(45), 8 RPAR,IPAR) C IWORK(21) = -1 IF (START) IWORK(21) = 1 IWORK(22) = -1 IF (PHASE1) IWORK(22) = 1 IWORK(23) = -1 IF (NORND) IWORK(23) = 1 IWORK(24) = -1 IF (STIFF) IWORK(24) = 1 IWORK(25) = -1 IF (INTOUT) IWORK(25) = 1 C IF (IDID .NE. (-2)) IWORK(LIW) = IWORK(LIW) + 1 IF (T .NE. RWORK(ITSTAR)) IWORK(LIW) = 0 C RETURN END