A. Arithmetic, error analysis A1. Integer A2. Rational A3. Real A3A. Single precision A3B. Double precision A3C. Extended precision A3D. Extended range A4. Complex A4A. Single precision A4B. Double precision A4C. Extended precision A4D. Extended range A5. Interval A5A. Real A5B. Complex A6. Change of representation A6A. Type conversion A6B. Base conversion A6C. Decomposition, construction A7. Sequences (e.g., convergence acceleration) B. Number theory C. Elementary and special functions (search also class L5) C1. Integer-valued functions (e.g., floor, ceiling, factorial, binomial coefficient) C2. Powers, roots, reciprocals C3. Polynomials C3A. Orthogonal C3A1. Trigonometric C3A2. Chebyshev, Legendre C3A3. Laguerre C3A4. Hermite C3B. Non-orthogonal C4. Elementary transcendental functions C4A. Trigonometric, inverse trigonometric C4B. Exponential, logarithmic C4C. Hyperbolic, inverse hyperbolic C4D. Integrals of elementary transcendental functions C5. Exponential and logarithmic integrals C6. Cosine and sine integrals C7. Gamma C7A. Gamma, log gamma, reciprocal gamma C7B. Beta, log beta C7C. Psi function C7D. Polygamma function C7E. Incomplete gamma C7F. Incomplete beta C7G. Riemann zeta C8. Error functions C8A. Error functions, their inverses, integrals, including the normal distribution function C8B. Fresnel integrals C8C. Dawson's integral C9. Legendre functions C10. Bessel functions C10A. J, Y, H-(1), H-(2) C10A1. Real argument, integer order C10A2. Complex argument, integer order C10A3. Real argument, real order C10A4. Complex argument, real order C10A5. Complex argument, complex order C10B. I, K C10B1. Real argument, integer order C10B2. Complex argument, integer order C10B3. Real argument, real order C10B4. Complex argument, real order C10B5. Complex argument, complex order C10C. Kelvin functions C10D. Airy and Scorer functions C10E. Struve, Anger, and Weber functions C10F. Integrals of Bessel functions C11. Confluent hypergeometric functions C12. Coulomb wave functions C13. Jacobian elliptic functions, theta functions C14. Elliptic integrals C15. Weierstrass elliptic functions C16. Parabolic cylinder functions C17. Mathieu functions C18. Spheroidal wave functions C19. Other special functions D. Linear Algebra D1. Elementary vector and matrix operations D1A. Elementary vector operations D1A1. Set to constant D1A2. Minimum and maximum components D1A3. Norm D1A3A. L-1 (sum of magnitudes) D1A3B. L-2 (Euclidean norm) D1A3C. L-infinity (maximum magnitude) D1A4. Dot product (inner product) D1A5. Copy or exchange (swap) D1A6. Multiplication by scalar D1A7. Triad (a*x+y for vectors x,y and scalar a) D1A8. Elementary rotation (Givens transformation) D1A9. Elementary reflection (Householder transformation) D1A10. Convolutions D1B. Elementary matrix operations D1B1. Set to zero, to identity D1B2. Norm D1B3. Transpose D1B4. Multiplication by vector D1B5. Addition, subtraction D1B6. Multiplication D1B7. Matrix polynomial D1B8. Copy D1B9. Storage mode conversion D1B10. Elementary rotation (Givens transformation) D1B11. Elementary reflection (Householder transformation) D2. Solution of systems of linear equations (including inversion, LU and related decompositions) D2A. Real nonsymmetric matrices D2A1. General D2A2. Banded D2A2A. Tridiagonal D2A3. Triangular D2A4. Sparse D2B. Real symmetric matrices D2B1. General D2B1A. Indefinite D2B1B. Positive definite D2B2. Positive definite banded D2B2A. Tridiagonal D2B4. Sparse D2C. Complex non-Hermitian matrices D2C1. General D2C2. Banded D2C2A. Tridiagonal D2C3. Triangular D2C4. Sparse D2D. Complex Hermitian matrices D2D1. General D2D1A. Indefinite D2D1B. Positive definite D2D2. Positive definite banded D2D2A. Tridiagonal D2D4. Sparse D2E. Associated operations (e.g., matrix reorderings) D3. Determinants D3A. Real nonsymmetric matrices D3A1. General D3A2. Banded D3A2A. Tridiagonal D3A3. Triangular D3A4. Sparse D3B. Real symmetric matrices D3B1. General D3B1A. Indefinite D3B1B. Positive definite D3B2. Positive definite banded D3B2A. Tridiagonal D3B4. Sparse D3C. Complex non-Hermitian matrices D3C1. General D3C2. Banded D3C2A. Tridiagonal D3C3. Triangular D3C4. Sparse D3D. Complex Hermitian matrices D3D1. General D3D1A. Indefinite D3D1B. Positive definite D3D2. Positive definite banded D3D2A. Tridiagonal D3D4. Sparse D4. Eigenvalues, eigenvectors D4A. Ordinary eigenvalue problems (Ax = (lambda) * x) D4A1. Real symmetric D4A2. Real nonsymmetric D4A3. Complex Hermitian D4A4. Complex non-Hermitian D4A5. Tridiagonal D4A6. Banded D4A7. Sparse D4B. Generalized eigenvalue problems (e.g., Ax = (lambda)*Bx) D4B1. Real symmetric D4B2. Real general D4B3. Complex Hermitian D4B4. Complex general D4B5. Banded D4C. Associated operations D4C1. Transform problem D4C1A. Balance matrix D4C1B. Reduce to compact form D4C1B1. Tridiagonal D4C1B2. Hessenberg D4C1B3. Other D4C1C. Standardize problem D4C2. Compute eigenvalues of matrix in compact form D4C2A. Tridiagonal D4C2B. Hessenberg D4C2C. Other D4C3. Form eigenvectors from eigenvalues D4C4. Back transform eigenvectors D4C5. Determine Jordan normal form D5. QR decomposition, Gram-Schmidt orthogonalization D6. Singular value decomposition D7. Update matrix decompositions D7A. LU D7B. Cholesky D7C. QR D7D. Singular value D8. Other matrix equations (e.g., AX+XB=C) D9. Overdetermined or underdetermined systems of equations, singular systems, pseudo-inverses (search also classes D5, D6, K1a, L8a) E. Interpolation E1. Univariate data (curve fitting) E1A. Polynomial splines (piecewise polynomials) E1B. Polynomials E1C. Other functions (e.g., rational, trigonometric) E2. Multivariate data (surface fitting) E2A. Gridded E2B. Scattered E3. Service routines (e.g., grid generation, evaluation of fitted functions) (search also class N5) F. Solution of nonlinear equations F1. Single equation F1A. Smooth F1A1. Polynomial F1A1A. Real coefficients F1A1B. Complex coefficients F1A2. Nonpolynomial F1B. General (no smoothness assumed) F2. System of equations F2A. Smooth F2B. General (no smoothness assumed) F3. Service routines (e.g., check user-supplied derivatives) G. Optimization (search also classes K, L8) G1. Unconstrained G1A. Univariate G1A1. Smooth function G1A1A. User provides no derivatives G1A1B. User provides first derivatives G1A1C. User provides first and second derivatives G1A2. General function (no smoothness assumed) G1B. Multivariate G1B1. Smooth function G1B1A. User provides no derivatives G1B1B. User provides first derivatives G1B1C. User provides first and second derivatives G1B2. General function (no smoothness assumed) G2. Constrained G2A. Linear programming G2A1. Dense matrix of constraints G2A2. Sparse matrix of constraints G2B. Transportation and assignments problem G2C. Integer programming G2C1. Zero/one G2C2. Covering and packing problems G2C3. Knapsack problems G2C4. Matching problems G2C5. Routing, scheduling, location problems G2C6. Pure integer programming G2C7. Mixed integer programming G2D. Network (for network reliability search class M) G2D1. Shortest path G2D2. Minimum spanning tree G2D3. Maximum flow G2D3A. Generalized networks G2D3B. Networks with side constraints G2D4. Test problem generation G2E. Quadratic programming G2E1. Positive definite Hessian (i.e. convex problem) G2E2. Indefinite Hessian G2F. Geometric programming G2G. Dynamic programming G2H. General nonlinear programming G2H1. Simple bounds G2H1A. Smooth function G2H1A1. User provides no derivatives G2H1A2. User provides first derivatives G2H1A3. User provides first and second derivatives G2H1B. General function (no smoothness assumed) G2H2. Linear equality or inequality constraints G2H2A. Smooth function G2H2A1. User provides no derivatives G2H2A2. User provides first derivatives G2H2A3. User provides first and second derivatives G2H2B. General function (no smoothness assumed) G2H3. Nonlinear constraints G2H3A. Equality constraints only G2H3A1. Smooth function and constraints G2H3A1A. User provides no derivatives G2H3A1B. User provides first derivatives of function and constraints G2H3A1C. User provides first and second derivatives of function and constraints G2H3A2. General function and constraints (no smoothness assumed) G2H3B. Equality and inequality constraints G2H3B1. Smooth function and constraints G2H3B1A. User provides no derivatives G2H3B1B. User provides first derivatives of function and constraints G2H3B1C. User provides first and second derivatives of function and constraints G2H3B2. General function and constraints (no smoothness assumed) G2I. Global solution to nonconvex problems G3. Optimal control G4. Service routines G4A. Problem input (e.g., matrix generation) G4B. Problem scaling G4C. Check user-supplied derivatives G4D. Find feasible point G4E. Check for redundancy G4F. Other H. Differentiation, integration H1. Numerical differentiation H2. Quadrature (numerical evaluation of definite integrals) H2A. One-dimensional integrals H2A1. Finite interval (general integrand) H2A1A. Integrand available via user-defined procedure H2A1A1. Automatic (user need only specify required accuracy) H2A1A2. Nonautomatic H2A1B. Integrand available only on grid H2A1B1. Automatic (user need only specify required accuracy) H2A1B2. Nonautomatic H2A2. Finite interval (specific or special type integrand including weight functions, oscillating and singular integrands, principal value integrals, splines, etc.) H2A2A. Integrand available via user-defined procedure H2A2A1. Automatic (user need only specify required accuracy) H2A2A2. Nonautomatic H2A2B. Integrand available only on grid H2A2B1. Automatic (user need only specify required accuracy) H2A2B2. Nonautomatic H2A3. Semi-infinite interval (including e**(-x) weight function) H2A3A. Integrand available via user-defined procedure H2A3A1. Automatic (user need only specify required accuracy) H2A3A2. Nonautomatic H2A4. Infinite interval (including e**(-x**2)) weight function) H2A4A. Integrand available via user-defined procedure H2A4A1. Automatic (user need only specify required accuracy) H2A4A2. Nonautomatic H2B. Multidimensional integrals H2B1. One or more hyper-rectangular regions H2B1A. Integrand available via user-defined procedure H2B1A1. Automatic (user need only specify required accuracy) H2B1A2. Nonautomatic H2B1B. Integrand available only on grid H2B1B1. Automatic (user need only specify required accuracy) H2B1B2. Nonautomatic H2B2. Nonrectangular region, general region H2B2A. Integrand available via user-defined procedure H2B2A1. Automatic (user need only specify required accuracy) H2B2A2. Nonautomatic H2B2B. Integrand available only on grid H2B2B1. Automatic (user need only specify required accuracy) H2B2B2. Nonautomatic H2C. Service routines (compute weight and nodes for quadrature formulas) I. Differential and integral equations I1. Ordinary differential equations I1A. Initial value problems I1A1. General, nonstiff or mildly stiff I1A1A. One-step methods (e.g., Runge-Kutta) I1A1B. Multistep methods (e.g., Adams' predictor-corrector) I1A1C. Extrapolation methods (e.g., Bulirsch-Stoer) I1A2. Stiff and mixed algebraic-differential equations I1B. Multipoint boundary value problems I1B1. Linear I1B2. Nonlinear I1B3. Eigenvalue (e.g., Sturm-Liouville) I1C. Service routines (e.g., interpolation of solutions, error handling) I2. Partial differential equations I2A. Initial boundary value problems I2A1. Parabolic I2A1A. One spatial dimension I2A1B. Two or more spatial dimensions I2A2. Hyperbolic I2B. Elliptic boundary value problems I2B1. Linear I2B1A. Second order I2B1A1. Poisson (Laplace) or Helmholz equation I2B1A1A. Rectangular domain (or topologically rectangular in the coordinate system) I2B1A1B. Nonrectangular domain I2B1A2. Other separable problems I2B1A3. Nonseparable problems I2B1C. Higher order equations (e.g., biharmonic) I2B2. Nonlinear I2B3. Eigenvalue I2B4. Service routines I2B4A. Domain triangulation (search also class P2a2c1) I2B4B. Solution of discretized elliptic equations I3. Integral equations J. Integral transforms J1. Fast Fourier transforms (search class L10 for time series analysis) J1A. One-dimensional J1A1. Real J1A2. Complex J1A3. Trigonometric (sine, cosine) J1B. Multidimensional J2. Convolutions J3. Laplace transforms J4. Hilbert transforms K. Approximation (search also class L8) K1. Least squares (L-2) approximation K1A. Linear least squares (search also classes D5, D6, D9) K1A1. Unconstrained K1A1A. Univariate data (curve fitting) K1A1A1. Polynomial splines (piecewise polynomials) K1A1A2. Polynomials K1A1A3. Other functions (e.g., rational, trigonometric, user-specified) K1A1B. Multivariate data (surface fitting) K1A2. Constrained K1A2A. Linear constraints K1A2B. Nonlinear constraints K1B. Nonlinear least squares K1B1. Unconstrained K1B1A. Smooth functions K1B1A1. User provides no derivatives K1B1A2. User provides first derivatives K1B1A3. User provides first and second derivatives K1B1B. General functions K1B2. Constrained K1B2A. Linear constraints K1B2B. Nonlinear constraints K2. Minimax (L-infinity) approximation K3. Least absolute value (L-1) approximation K4. Other analytic approximations (e.g., Taylor polynomial, Pade) K5. Smoothing K6. Service routines (e.g., mesh generation, evaluation of fitted functions) (search also class N5) L. Statistics, probability L1. Data summarization L1A. One univariate quantitative sample L1A1. Ungrouped data L1A1A. Location L1A1B. Dispersion L1A1C. Shape L1A1D. Distribution, density L1A2. Ungrouped data with missing values L1A3. Grouped data L1A3A. Location L1A3B. Dispersion L1A3C. Shape L1C. One univariate qualitative (proportional) sample L1E. Two or more univariate samples or one multivariate sample L1E1. Ungrouped data L1E1A. Location L1E1B. Correlation L1E2. Ungrouped data with missing values L1E3. Grouped data L1F. Two or more multivariate samples L2. Data manipulation (search also class N) L2A. Transform (search also class N6 for sorting, ranking) L2B. Group L2C. Sample L2D. Subset L3. Graphics (search also class Q) L3A. Histograms L3B. Distribution functions L3C. Scatter diagrams L3C1. Y vs. X L3C2. Symbol plots L3C3. Multiple plots L3C4. Probability plots L3C4B. Beta, binomial L3C4C. Cauchy, chi-squared L3C4D. Double exponential L3C4E. Exponential, extreme value L3C4F. F distribution L3C4G. Gamma, geometric L3C4H. Halfnormal L3C4L. Lambda, logistic, lognormal L3C4N. Negative binomial, normal L3C4P. Pareto, Poisson L3C4T. t distribution L3C4U. Uniform L3C4W. Weibull L3C5. Time series plots (X(i) vs. i, vertical, lag) L3D. EDA graphics L4. Elementary statistical inference, hypothesis testing L4A. One univariate quantitative sample L4A1. Ungrouped data L4A1A. Parameter estimation L4A1A2. Binomial L4A1A5. Extreme value L4A1A14. Normal L4A1A16. Poisson L4A1A21. Uniform L4A1A23. Weibull L4A1B. Distribution-free (nonparametric) analysis L4A1C. Goodness-of-fit tests L4A1D. Tests on sequences of numbers L4A1E. Density and distribution function estimation L4A1F. Tolerance limits L4A2. Ungrouped data with missing values L4A3. Grouped data L4A3A. Parameter estimation L4A3A14. Normal L4B. Two or more univariate quantitative samples L4B1. Ungrouped data L4B1A. Parameter estimation L4B1A14. Normal L4B1B. Distribution-free (nonparametric) analysis L4B2. Ungrouped data with missing values L4B3. Grouped data L4C. One univariate qualitative (proportional) sample L4D. Two or more univariate samples L4E. One multivariate sample L4E1. Ungrouped data L4E1A. Parameter estimation L4E1A14. Normal L4E1B. Distribution-free (nonparametric) analysis L4E2. Ungrouped data with missing values L4E2A. Parameter estimation L4E2B. Distribution-free (nonparametric) analysis L4E3. Grouped data L4E3A. Parameter estimation L4E3A14. Normal L4E3B. Distribution-free (nonparametric) analysis L4E4. Two or more multivariate samples L4E4A. Parameter estimation L4E4A14. Normal L5. Function evaluation (search also class C) L5A. Univariate L5A1. Cumulative distribution functions, probability density functions L5A1B. Beta, binomial L5A1C. Cauchy, chi-squared L5A1D. Double exponential L5A1E. Error function, exponential, extreme value L5A1F. F distribution L5A1G. Gamma, general, geometric L5A1H. Halfnormal, hypergeometric L5A1K. Kolmogorov-Smirnov L5A1L. Lambda, logistic, lognormal L5A1N. Negative binomial, normal L5A1P. Pareto, Poisson L5A1T. t distribution L5A1U. Uniform L5A1W. Weibull L5A2. Inverse cumulative distribution functions, sparsity functions L5A2B. Beta, binomial L5A2C. Cauchy, chi-squared L5A2D. Double exponential L5A2E. Exponential, extreme value L5A2F. F distribution L5A2G. Gamma, general, geometric L5A2H. Halfnormal L5A2L. Lambda, logistic, lognormal L5A2N. Negative binomial, normal, normal scores L5A2P. Pareto, Poisson L5A2T. t distribution L5A2U. Uniform L5A2W. Weibull L5B. Multivariate L5B1. Cumulative distribution functions, probability density functions L5B1N. Normal L6. Pseudo-random number generation L6A. Univariate L6A2. Beta, binomial, Boolean L6A3. Cauchy, chi-squared L6A4. Double exponential L6A5. Exponential, extreme value L6A6. F distribution L6A7. Gamma, general (continuous, discrete) distributions, geometric L6A8. Halfnormal, hypergeometric L6A9. Integers L6A12. Lambda, logical, logistic, lognormal L6A14. Negative binomial, normal L6A15. Order statistics L6A16. Pareto, permutations, Poisson L6A19. Samples, stable distribution L6A20. t distribution, time series, triangular L6A21. Uniform L6A22. Von Mises L6A23. Weibull L6B. Multivariate L6B3. Contingency table, correlation matrix L6B13. Multinomial L6B14. Normal L6B15. Orthogonal matrix L6B21. Uniform L6C. Service routines (e.g., seed) L7. Experimental design, including analysis of variance L7A. Univariate L7A1. One-way analysis of variance L7A1A. Parametric analysis L7A1A1. Contrasts, multiple comparisons L7A1A2. Analysis of variance components L7A1B. Distribution-free (nonparametric) analysis L7A2. Balanced multiway design L7A2A. Complete L7A2A1. Parametric analysis L7A2A1A. Two-way L7A2A1B. Factorial L7A2A1C. Nested L7A2A2. Distribution-free (nonparametric) analysis L7A2B. Incomplete L7A2B1. Parametric analysis L7A2B1A. Latin square L7A2B1B. Lattice designs L7A2B2. Distribution-free (nonparametric) analysis L7A3. Analysis of covariance L7A4. General linear model (unbalanced design) L7A4A. Parametric analysis L7A4B. Distribution-free (nonparametric) analysis L7B. Multivariate L8. Regression (search also classes G, K) L8A. Linear least squares (L-2) (search also classes D5, D6, D9) L8A1. Simple L8A1A. Ordinary L8A1A1. Unweighted L8A1A1A. No missing values L8A1A1B. Missing values L8A1A2. Weighted L8A1B. Through the origin L8A1C. Errors in variables L8A1D. Calibration (inverse regression) L8A2. Polynomial L8A2A. Not using orthogonal polynomials L8A2A1. Unweighted L8A2A2. Weighted L8A2B. Using orthogonal polynomials L8A2B1. Unweighted L8A2B2. Weighted L8A3. Piecewise polynomial (i.e. multiphase or spline) L8A4. Multiple L8A4A. Ordinary L8A4A1. Unweighted L8A4A1A. No missing values L8A4A1B. Missing values L8A4A1C. From correlation data L8A4A1D. Using principal components L8A4A1E. Using preference pairs L8A4A2. Weighted L8A4B. Errors in variables L8A4D. Logistic L8A5. Variable selection L8A6. Regression design L8A7. Several multiple regressions L8A8. Multivariate L8A9. Diagnostics L8A10. Hypothesis testing, inference L8A10A. Lack-of-fit tests L8A10B. Analysis of residuals L8A10C. Inference L8B. Biased (ridge) L8C. Linear least absolute value (L-1) L8D. Linear minimax (L-infinity) L8E. Robust L8F. EDA L8G. Nonlinear L8G1. Unweighted L8G1A. Derivatives not supplied L8G1B. Derivatives supplied L8G2. Weighted L8G2A. Derivatives not supplied L8G2B. Derivatives supplied L8H. Service routines L9. Categorical data analysis L9A. 2-by-2 tables L9B. Two-way tables L9C. Log-linear model L9D. EDA (e.g., median polish) L10. Time series analysis (search also class L3c5 for time series graphics) L10A. Transformations, transforms (search also class J1) L10B. Smoothing, filtering L10C. Autocorrelation analysis L10D. Complex demodulation L10E. ARMA and ARIMA modeling and forecasting L10E1. Model and parameter estimation L10E2. Forecasting L10F. Spectral analysis L10G. Cross-correlation analysis L10G1. Parameter estimation L10G2. Forecasting L11. Correlation analysis L12. Discriminant analysis L13. Factor analysis L13A. Principal components analysis L14. Cluster analysis L14A. Unconstrained L14A1. Nested L14A1A. Joining (e.g., single link) L14A1B. Divisive L14A2. Non-nested L14B. Constrained L14B1. One-dimensional L14B2. Two-dimensional L14C. Display L15. Life testing, survival analysis M. Simulation, stochastic modeling (search also classes L6, L10) M1. Simulation M1A. Discrete M1B. Continuous (Markov models) M2. Queueing M3. Reliability M3A. Quality control M3B. Electrical network M4. Project optimization (e.g., PERT) N. Data handling (search also class L2) N1. Input, output N2. Bit manipulation N3. Character manipulation N4. Storage management (e.g., stacks, heaps, trees) N5. Searching N5A. Extreme value N5B. Insertion position N5C. On a key N6. Sorting N6A. Internal N6A1. Passive (i.e. construct pointer array, rank) N6A1A. Integer N6A1B. Real N6A1B1. Single precision N6A1B2. Double precision N6A1C. Character N6A2. Active N6A2A. Integer N6A2B. Real N6A2B1. Single precision N6A2B2. Double precision N6A2C. Character N6B. External N7. Merging N8. Permuting O. Symbolic computation P. Computational geometry (search also classes G, Q) P1. One dimension P2. Two dimensions P2A. Points, lines P2A1. Relationships P2A1A. Closest and farthest points P2A1B. Intersection P2A2. Graph construction P2A2A. Convex hull P2A2B. Minimum spanning tree P2A2C. Region partitioning P2A2C1. Triangulation P2A2C2. Voronoi diagram P2B. Polygons (e.g., intersection, hidden line problems) P2C. Circles P3. Three dimensions P3A. Points, lines, planes P3B. Polytopes P3C. Spheres P4. More than three dimensions Q. Graphics (search also classes L3, P) Q1. Line printer plotting R. Service routines R1. Machine-dependent constants R2. Error checking (e.g., check monotonicity) R3. Error handling R3A. Set criteria for fatal errors R3B. Set unit number for error messages R3C. Other utility programs R4. Documentation retrieval S. Software development tools S1. Program transformation S2. Static analysis S3. Dynamic analysis Z. Other