*DECK RADB4 SUBROUTINE RADB4 (IDO, L1, CC, CH, WA1, WA2, WA3) C***BEGIN PROLOGUE RADB4 C***SUBSIDIARY C***PURPOSE Calculate the fast Fourier transform of subvectors of C length four. C***LIBRARY SLATEC (FFTPACK) C***TYPE SINGLE PRECISION (RADB4-S) C***AUTHOR Swarztrauber, P. N., (NCAR) C***ROUTINES CALLED (NONE) C***REVISION HISTORY (YYMMDD) C 790601 DATE WRITTEN C 830401 Modified to use SLATEC library source file format. C 860115 Modified by Ron Boisvert to adhere to Fortran 77 by C (a) changing dummy array size declarations (1) to (*), C (b) changing definition of variable SQRT2 by using C FORTRAN intrinsic function SQRT instead of a DATA C statement. C 881128 Modified by Dick Valent to meet prologue standards. C 890831 Modified array declarations. (WRB) C 891214 Prologue converted to Version 4.0 format. (BAB) C 900402 Added TYPE section. (WRB) C***END PROLOGUE RADB4 DIMENSION CC(IDO,4,*), CH(IDO,L1,4), WA1(*), WA2(*), WA3(*) C***FIRST EXECUTABLE STATEMENT RADB4 SQRT2 = SQRT(2.) DO 101 K=1,L1 TR1 = CC(1,1,K)-CC(IDO,4,K) TR2 = CC(1,1,K)+CC(IDO,4,K) TR3 = CC(IDO,2,K)+CC(IDO,2,K) TR4 = CC(1,3,K)+CC(1,3,K) CH(1,K,1) = TR2+TR3 CH(1,K,2) = TR1-TR4 CH(1,K,3) = TR2-TR3 CH(1,K,4) = TR1+TR4 101 CONTINUE IF (IDO-2) 107,105,102 102 IDP2 = IDO+2 IF((IDO-1)/2.LT.L1) GO TO 108 DO 104 K=1,L1 CDIR$ IVDEP DO 103 I=3,IDO,2 IC = IDP2-I TI1 = CC(I,1,K)+CC(IC,4,K) TI2 = CC(I,1,K)-CC(IC,4,K) TI3 = CC(I,3,K)-CC(IC,2,K) TR4 = CC(I,3,K)+CC(IC,2,K) TR1 = CC(I-1,1,K)-CC(IC-1,4,K) TR2 = CC(I-1,1,K)+CC(IC-1,4,K) TI4 = CC(I-1,3,K)-CC(IC-1,2,K) TR3 = CC(I-1,3,K)+CC(IC-1,2,K) CH(I-1,K,1) = TR2+TR3 CR3 = TR2-TR3 CH(I,K,1) = TI2+TI3 CI3 = TI2-TI3 CR2 = TR1-TR4 CR4 = TR1+TR4 CI2 = TI1+TI4 CI4 = TI1-TI4 CH(I-1,K,2) = WA1(I-2)*CR2-WA1(I-1)*CI2 CH(I,K,2) = WA1(I-2)*CI2+WA1(I-1)*CR2 CH(I-1,K,3) = WA2(I-2)*CR3-WA2(I-1)*CI3 CH(I,K,3) = WA2(I-2)*CI3+WA2(I-1)*CR3 CH(I-1,K,4) = WA3(I-2)*CR4-WA3(I-1)*CI4 CH(I,K,4) = WA3(I-2)*CI4+WA3(I-1)*CR4 103 CONTINUE 104 CONTINUE GO TO 111 108 DO 110 I=3,IDO,2 IC = IDP2-I CDIR$ IVDEP DO 109 K=1,L1 TI1 = CC(I,1,K)+CC(IC,4,K) TI2 = CC(I,1,K)-CC(IC,4,K) TI3 = CC(I,3,K)-CC(IC,2,K) TR4 = CC(I,3,K)+CC(IC,2,K) TR1 = CC(I-1,1,K)-CC(IC-1,4,K) TR2 = CC(I-1,1,K)+CC(IC-1,4,K) TI4 = CC(I-1,3,K)-CC(IC-1,2,K) TR3 = CC(I-1,3,K)+CC(IC-1,2,K) CH(I-1,K,1) = TR2+TR3 CR3 = TR2-TR3 CH(I,K,1) = TI2+TI3 CI3 = TI2-TI3 CR2 = TR1-TR4 CR4 = TR1+TR4 CI2 = TI1+TI4 CI4 = TI1-TI4 CH(I-1,K,2) = WA1(I-2)*CR2-WA1(I-1)*CI2 CH(I,K,2) = WA1(I-2)*CI2+WA1(I-1)*CR2 CH(I-1,K,3) = WA2(I-2)*CR3-WA2(I-1)*CI3 CH(I,K,3) = WA2(I-2)*CI3+WA2(I-1)*CR3 CH(I-1,K,4) = WA3(I-2)*CR4-WA3(I-1)*CI4 CH(I,K,4) = WA3(I-2)*CI4+WA3(I-1)*CR4 109 CONTINUE 110 CONTINUE 111 IF (MOD(IDO,2) .EQ. 1) RETURN 105 DO 106 K=1,L1 TI1 = CC(1,2,K)+CC(1,4,K) TI2 = CC(1,4,K)-CC(1,2,K) TR1 = CC(IDO,1,K)-CC(IDO,3,K) TR2 = CC(IDO,1,K)+CC(IDO,3,K) CH(IDO,K,1) = TR2+TR2 CH(IDO,K,2) = SQRT2*(TR1-TI1) CH(IDO,K,3) = TI2+TI2 CH(IDO,K,4) = -SQRT2*(TR1+TI1) 106 CONTINUE 107 RETURN END