
Ani2D Version 1.3

Generator of Adaptive Anisotropic

Meshes based on the Hessian Recovery

User’s Guide
December 1, 2005

1997-2005

1 Introduction

The Fortran package Ani2D is developed by Konstantin Lipnikov and Yuri Vassilevski. It is designated
for generation conformal triangular meshes which are quasi-uniform in a given metric. The metric
may be defined either explicitly, via analytical formulae, or implicitly, via a discrete Hessian recovered
from a user-supplied mesh function. In the first case, the user may generate a mesh with desirable
properties. In the second case, the resulting mesh is adapted to the given mesh function enabling a
better resolution of sharp changes in the solution.

The library libani2D-1.2.a can be built to incorporate our code into other packages.
The input data for our generator is an initial conformal triangulation. It may be a very coarse

mesh consisting of a few triangles (made by hands), or a very fine mesh produced by another mesh
generator. Ani2D modifies the initial mesh through a sequence of local modifications. This approach
provides a stable algorithm for generating strongly anisotropic grids. A generalization of the algorithm
to tetrahedral meshes has been successfully implemented by authors. It is pertinent to note that Ani2D
was written as a test-bed for Ani3D, the generator of anisotropic tetrahedral meshes. The latter is
available by contacting the authors (lipnikov@hotmail.com or vasilevs@dodo.inm.ras.ru).

This document is a quick guide to the user. It describes a structure of the package, input data,
and user-supplied (optional) routines. Furthermore, it explains how the user can control the mesh
generation. Finally, it presents a synthetic example showing mesh generation process in detail.

2 Copyright and Usage Restrictions

The software is made available for nonprofit use only. You may copy and use this software without
any charge, provided that the COPYRIGHT file is attached to all copies. For all other uses please contact
one of the authors.

The software is made available “as is” without any assurance that it will work for your purposes.
The authors are not responsible for any damages caused by using this software.

3 Description of Ani2D

The main objective of Ani2D is to produce a mesh with a prescribed number of triangles which is
as much quasi-uniform in a given metric as possible. For example, when the metric is isotropic and
constant, Ani2D will generate a mesh consisting of equilateral triangles. A measure of quasi-uniformity
is a positive number less or equal to 1 which is called the mesh quality. The mesh with a prescribed
number of equilateral triangles of the same size (measured in the given metric) has quality 1.

3.1 Structure of the package

The main Fortran 77 subroutines of Ani2D are mesh metric and mesh solution located in files with
the same names. The depending subroutines are contained in the other files in directory src/aniGEN.
The files

main_metric.f main_solution.f time.f

may be modified by the user. Routines in the first file generate analytic metric. Routines in the second
file use a user-supplied solution defined at mesh nodes to generate a metric. In addition to that, these
files contain routine calCrv describing a parametrization of curved boundaries. Some of the models
do not have curved boundaries. In this case routine calCrv is the dummy routine. The file time.f

is a wrapper for the system call etime computing the CPU time. Generally speaking, this routine
depends on the operational system. A few examples of files main metric.f and main solution.f

can be found in directory src/aniGEN/examples.

2

For user convenience, package Ani2D is equipped with auxiliary files

loadM.f saveM.f draw.f

Their purpose is to facilitate loading, saving and visualizing meshes. The file bin/ps.lib contains a
library of PostScript routines used for the mesh visualization. The files

main_metric.f main_solution.f

are examples of main programs showing how to call two main routines of the package: mesh metric

and mesh solution, respectively. The file

Makefile

is an example of building the package under Linux. The executable programs are put in directory
bin. A few examples of input meshes may be found in directory data. This document and other
documentation related to the package are located in directory doc.

3.2 Basic things the user should know

The package provides two methods for controling the mesh generation. The first method is based on
a piece-wise linear interpolant of the user-defined metric. The second method is based on a piece-
wise linear metric defined by a discrete Hessian of the user-supplied mesh function. The package
is encapsulated in the two basic routines mesh metric and mesh solution corresponding to the above
methods. The comments in file src/aniGEN/mesh solution.f are worth to read! After understanding
what are input and output data for each of the methods, the user may find more detail in files
main metric *.f and main solution *.f located in directory src/aniGEN/examples.

3.3 Input data

The input data may be split into three types: data files, Fortran routines and control parameters.

• The input data files are the files containing coordinates of mesh nodes, connectivity tables for
triangles and boundary edges, a parametrization of curved boundary edges, a list of fixed mesh
nodes, a list of fixed mesh edges, and a list of fixed elements. The lists of fixed points, edges
and elements may be empty. The list of boundary edges may be also empty. In this case, the
boundary edges will be recovered by package routines. A good example illustrating format of
the data file is data/star.ani (see Section 5 for a more complicated example). A data file can
be accessed via routine loadMone.

The mesh loader loadMone understands the format of input data files located in directory data.
For other formats, a new mesh loader has to be written.

The current version of Ani2D supports the old format for data files. Each piece of the mesh data
(nodes, elements, edges, etc.) is put in a separate file. One example of this format is located in
directory data/old-data. These mesh data can be accessed via the (obsolete) routine loadM.
The user may use program Main Convert in file src/aniGEN/main convert.f to convert old
data format into the new one (see also the list of new features in Ani2D-1.3 in Section 6).

Depending of the mesh generation method, in addition to mesh data, a mesh function has to
be provided. It can be done by the function loader loadS located in file src/aniGEN/loadM.f.

• The input Fortran routines are the Fortran 77 routines used by the package in the process of
mesh generation. They are located in files main metric.f and main solution.f.

An analytical metric has to be supplied for module mesh metric. The user should change
functions F, G and H located in file src/aniGEN/main metric.f. For more detail, we refer to
comments in this file.

3

A routine calCrv has to be supplied for both modules mesh metric and mesh solution if the
user’s model has curved boundaries. If the user’s model does not have curved boundaries, the
routine calCrv is the dummy routine. CalCrv describes parameterizations of curved boundaries.
There is a way to avoid writing this routine. The user may use new features of Ani2D to fix
the boundary points (see Section 6). Then, the final mesh will approximate curved boundaries
with the same accuracy as the initial mesh is.

• The input control parameters are the numbers used to control the mesh generation. They are
defined in files main metric.f and main solution.f. These files are in directory src/aniGEN.
The input control parameters are the following variables:

nEstar - [integer] the desired number of triangles

MaxQItr - [integer] the maximal number of local grid modifications

Quality - [real*8] the requested quality for the final grid

(a positive number between 0 and 1)

MaxSkipE - [integer] the maximal number of skipped triangles

The mesh generation is an iterative process every step of which is a local modification of the
current mesh. The stopping criterion for the iterative process is either achieving the requested
quality (Quality) or performing the allowed number of local modifications (MaxQItr). We
recommend to set Quality to a value between 0.5 and 0.8 and to choose MaxQItr to be several
times bigger than nEstar. We recommend to use for MaxSkipE the value set in the main
programs (about 100).

3.3.1 Mesh representation

The understanding of a mesh representation is important for the correct usage of modules mesh metric

and mesh solution:

nP - [integer] the number of points

nF - [integer] the number of boundary and interface edges

nE - [integer] the number of triangles

XYP(2, *) - [real*8] the Cartesian coordinates of mesh points

IPE(3, *) - [integer] connectivity list of triangles

lbE(*) - [integer] material indentificator (a positive number)

IPF(4, *) - [integer] column 1 & 2 - connectivity list of boundary edges

column 3 - number in the parametrization list ParCrv:

0 : this edge is a linear segment

n>0 : ParCrv(*, n) gives a parametrization

of this edge and iFnc(n) gives

a function number for computing the

Cartesian coordinates (see calCRv())

column 4 - boundary identificator

(example: unit square has 4 boundaries which

may have different identificators)

nPv - [integer] the number of fixed points

nFv - [integer] the number of fixed edges

nEv - [integer] the number of fixed triangles

IPV(*) - [integer] list of fixed points

4

IFV(*) - [integer] list of fixed edges

IEV(*) - [integer] list of fixed triangles

ParCrv(2, *) - [real*8] linear parameterization of curvilinear faces

column 1 - parameter for the starting point

column 2 - parameter for the terminal point

parameters for inner points are computed by the

linear interpolation between two given parameters

Cartesian coordinates are computed by user-given

formulas defined in calCrv().

iFnc(*) - [integer] function number for computing the Cartesian coordinates

Since some of the mesh data may be empty lists, the minimal mesh representation may contain
only nP, nE, XYP, IPE and lbE.

4 Getting started

After decompressing the distributive, the user will get the following subdirectories

bin/ data/ doc/ lib/ src/

By default, the executable files are stored in bin/. A few example of input files are located in data/

and data/old-data. A documentation for the package may be found in doc/. The source code is
stored in src/aniGEN/. In order to produce and compile the package, the user has to run

$cd src/aniGEN

$make exe

The user may change the names and options for compilers in file src/Rules.make. After the suc-
cessful compilation, the user is invited to run one of the executables in bin/. The same task can be
accomplished with make run-met or make run-sol. The output may look like:

$ cd ../../bin; ./Mesh_Metric.exe

Loading mesh ../data/wing.ani

STONE FLOWER! (1997-2005), version 1.2

Target: Quality 0.70 with 2000 triangles for at most 15000 iterations

status.fd: +1 [ANIForbidBoundaryElements] [user]

status.fd: +2 [ANIUse2ArmRule] [system]

status.fd: +8 [ANIDeleteTemporaryEdges] [system]

Maximal R/r = 0.193E+03 (R/r = 2 for equilateral triangle), status.fd: 11

ITRs: 0 Q=0.7635E-03 #P #F #E: 596 178 1037 tm= 0.01s

ITRs: 3486 Q=0.7000E+00 #P #F #E: 989 120 1874 tm= 0.41s

Maximal R/r = 0.397E+01 (R/r = 2 for equilateral triangle), status.fd: 11

Saving mesh ../data/save.ani

5

First, some of the input control parameters are printed out. Then, the quality of the current mesh and
the numbers of vertices, edges and triangles are printed. Additional output goes into Postscript files
ini.ps and fin.ps containing figures of initial and final meshes, respectively. The files are located in
directory bin. One way to check the contents of these files is to run make gs-ini and make gs-fin.

The program loads the input file ../data/wing.ani. The user may either to change the name of
the input file in the mesh loader:

Call loadMone(

& nP, MaxP, nF, MaxF, nE, MaxE,

& nPv, MaxPV, nFv, MaxFV, nEv, MaxEV,

& XYP, IPF, IPE, IPV, IFV, IEV, lbE,

& ParCrv, iFnc,

& "../data/square")

or to use one the examples from directory src/aniGEN/examples. The user may play with the input
control parameters in file src/aniGEN/main metric.f and with functions F,G, and H ilocated in the
same file. For instance, changing the metric (F,G,H), the user can understand how to control the
shape of triangles.

5 A synthetic example

In this section, we describe in detail a process of creating a new model and generating a quasi-uniform
mesh.

Let us assume that the user wishes to generate a quasi-uniform triangulation of a domain which
is the union of two circles with the radius 0.2 and centers (0.2,0.5), (0.8,0.5), respectively, and the
rectangle (0.2,0.45), (0.2,0.55), (0.8,0.55), (0.8,0.45). The domain is shown in Fig. 1.

Figure 1: The domain to be meshed.

The user has to write routine calCrv. If the user wishes to use mesh loader loadMone and mesh saver
saveMone, he has to create an input data file. Below, we explain how to produce these data from
scratch.

Step 1. First, we chose a model of parameterization. The shape of the domain dictates a natural
choice for the parameterization of curvilinear parts of the boundary: each circle is parametrized by a
trigonometric function. The input routine calCrv may be as follows:

6

Subroutine calCrv(tc, xyc, iFnc)

C ==

C The routine computes the Cartesian coordinates of point

C xyc from its parametric coordinate tc.

C

C tc - the given parametric coordinate of point

C xyc(2) - the Cartesian coordinate of the same point

C iFnc - the function number for computing

C

C On input : tc, iFnc

C On output: xyc(2)

C ==

Real*8 tc, xyc(2), L, H, R

L = 0.3D0

H = 0.1D0

R = 0.2D0

If(iFnc.EQ.1) Then

xyc(1) = 5D-1 + L - R * dcos(tc)

xyc(2) = 5D-1 + R * dsin(tc)

Else If(iFnc.EQ.2) Then

xyc(1) = 5D-1 - L + R * dcos(tc)

xyc(2) = 5D-1 - R * dsin(tc)

Else

Write(*,’(A,I5)’) ’Undefined function =’, iFnc

Stop

End if

Return

End

This code can be found in src/aniGEN/example/main metric sport.f.

Step 2. Second, we create input data file containing an initial coarse mesh. It is easy to observe that
a simple mesh consisting of 12 triangles will be safficient.

Figure 2: The initial coarse mesh.

The file data/sport.ani has a header (9 lines), followed by the list of points (11 points), list of
egdes (8 edges), list of triangles (12 edges) and the list of curved edges (6 edges):

T points: 11 (lines 10 - 20)

T edges: 8 (lines 23 - 30)

T elements: 12 (lines 33 - 44)

7

T curved edges: 6 (lines 47 - 52)

T fixed points: 0

T fixed edges: 0

T fixed elements: 0

11 # of points

0.500000000000000 0.500000000000000

0.800000000000000 0.500000000000000

0.200000000000000 0.500000000000000

0.606350832689630 0.550000000000000

0.941421356237310 0.641421356237310

0.941421356237310 0.358578643762690

0.606350832689630 0.450000000000000

0.393649167310370 0.450000000000000

5.857864376269000E-002 0.358578643762690

5.857864376269000E-002 0.641421356237310

0.393649167310370 0.550000000000000

8 # of edges

4 5 1 0 1

5 6 2 0 1

6 7 3 0 1

7 8 0 0 2

11 4 0 0 2

8 9 4 0 3

9 10 5 0 3

10 11 6 0 3

12 # of elements

2 4 5 1

2 5 6 1

2 6 7 1

2 7 4 1

1 7 8 1

1 8 11 1

1 11 4 1

1 4 7 1

3 8 11 1

3 11 10 1

3 10 9 1

3 9 8 1

6 # of curved edges

0.252680255142080 2.35619449019230 1

2.35619449019230 3.92699081698720 1

3.92699081698720 6.03050505203750 1

0.252680255142080 2.35619449019230 2

2.35619449019230 3.92699081698720 2

3.92699081698720 6.03050505203750 2

0 # number of fixed points

8

0 # number of fixed edges

0 # number of fixed elements

• Some of the mesh nodes may be relocated and even destroyed in a process of the mesh gener-
ation. However, the domain boundary requires that four nodes (intersections of the rectangle
with the circles) remain untouched. In order to provide this information, we need the list of
fixed points. However, this list may be replaced by proper coloring of boundary edges. If a
point is shared by two edges colored differently, it will be automatically added to the list of
fixed points.

• It is clear that there are eight boundary edges, six of them are part of the curvilinear boundary.
It is reasonable to mark the edges with three labels associated with the rectangle and two
circles. In each row, the first two entries are the node indices, the third entry is a reference to
a list of curved edges, the forth is dummy, and the fifth is a label (color) of the edge.

• The list of curved edges contains the starting and ending parameter values and a positive
number corresponding to a function in routine calCrv. It is very important to guarantee that
evaluation of calCrv gives exactly the same mesh coordinates as in the input file. For example,
let us take tc and iFnc from the third row, i.e. tc = 0.2526802551420 and iFnc = 1. Then,
routine calCrv should give the Cartesian coordinates of the 4th mesh node.

Step 3. Third, we have to choose an analytic metric. In other words, we have to define functions F,

G and H. We choose the identity matrix, i.e.

F = G = 1 and H = 0.

Step 4. Fourth, we set up the control parameters:

Integer nEStar

Parameter(nEStar = 1000)

Real*8 Quality

Parameter(Quality = 8D-1)

Thus, we plan to generate a mesh with approximately 1000 triangles. Each of the triangles will be
very close to an equilateral triangle.

Step 5. The final step is to collect all routines in file src/aniGEN/main metric.f, compile the
package and execute the code (# make exe run-met). We get the mesh shown in Fig. 3.

6 What is new in Ani2D-1.X

We improved robustness and efficiency of the code, made it more user friendly and added a few new
features. The most important features are listed below:

1. We revomed restriction that the initial model should be in the unit square.

2. The initial mesh may be tangled. The user may add ANIUntangleMesh to the parameter status
to untangle the mesh.

3. A few interesting features have been implemented. The full list of available options is in file
src/aniGEN/status.fd. Here are two most important options:

9

Figure 3: The final mesh.

• The user may freeze boundary points. This feature allows to preserve important geometric
features which is important for both isotropic and anisotropic metrics. Fig. 5 in Appendix
illustrates this feature. The fixed boundary points (red dots) prevents sharp boundary
from smearing. (The initial mesh has been found on the webcite of Jonathan Shewchuk.)

• The user may freeze boundary edges and mesh elements. This feature allows to preserve
mesh structure in important regions (e.g., in boundary layers).

• The interfaces between materials with different labels (lbE) are automatically recovered
and preserved.

4. We added a single-file data format. The data can be manipulated with routines loadMone and
saveMone.

5. Miscalenious code cleaning, documenting and improving. For example, we replaced Linpack
routines by similar routines from package Lapack which is now a part of most Linux distribu-
tions. If the user have not installed this package, the neccessary routines are put in directory
src/Lapack and can be binded into a short library liblapack-3.0.a using make lapack.

7 How to use library libani2D-1.3

Here we describe one of the main modules, mesh solution, of the library libani2D-1.3.a. The other
module, mesh metric, has exactly one parameter less than mesh solution.

Call mesh_solution(

& nP, MaxP, nF, MaxF, nE, MaxE, nPv,

& XYP, IPF, IPE, IPV,

& ParCrv, iFnc,

& nEStar,

& nFv, nEv, IFV, IEV, lbE,

& flagAuto, status,

& MaxSkipE, MaxQItr,

& Sol, Quality, rQuality,

& MaxWr, MaxWi, rW, iW,

& iPrint, iERR)

Most of the parameters were described in Section 3 (see file src/aniGEN/mesh solution.f for
more detail). The details on the other parameters are below:

10

I MaxP - [integer] maximal number of points

N MaxF - [integer] maximal number of boundary and interface edges

P MaxE - [integer] maximal number of triangles

U

T nFv - [integer] the number of fixed edges

nEv - [integer] the number of fixed triangles

P IFV(nFv) - [integer] list of fixed edges

A IEV(nEv) - [integer] list of fixed triangles

R

A nEstar - [integer] the desired number of triangles

M

E flagAuto - [logical] flag controling mesh generation:

T TRUE - recover missing mesh elements

E FALSE - check that input data are complete

R

s MaxSkipE - [integer] maximal number of skipped triangles

MaxQItr - [integer] maximal number of mesh modifications

Quality - [real*8] desired quality of the final mesh

MaxWr - [integer] maximal memory allocation for rW

MaxWi - [integer] maximal memory allocation for iW

iPrint - [integer] level of output information (0 - nothing)

I nP - [integer] the number of points

N nF - [integer] the number of boundary and interface edges

P nE - [integer] the number of triangles

U

T XYP(2, MaxP) - [integer] list of points

/ IPE(3, MaxE) - [integer] list of triangles

O lbE(MaxE) - [integer] material indentificator

U

T IPF(4, MaxF) - [integer] list of boundary and interface edges

P ParCrv(2, MaxF) - [real*8] parametrizations of curved edges

U iFnc(MaxF) - [integer] list of corresponding functions

T

nPv - [integer] the number of fixed points

IPV(nPv) - [integer] list of fixed points

P

A rQuality - [real*8] quality of the final mesh

R

A status - [integer] sum of positive numbers corresponding

M to desired mesh properties (see status.fd)

E

T Sol(MaxP) - [real*8] mesh function defined at points;

E linearly interpolated function on output

R

s rW(MaxWr) - [real*8] working array

iW(MaxWi) - [integer] another working array

11

8 FAQ

• Q. The mesh generator does not refine input mesh.
A. There are two cases when the code may do nothing. First, the number of mesh elements
whose quality is limited by model geometry (e.g. thin layers) is bigger then the control param-
eter MaxSkipE. The remedy is to increase this parameter. Second, a severe anisotropic input
metric does not allow to insert new mesh points in a very coarse mesh. The simple remedy is
to refine mesh using an isotropic metric and then switch to the anisotropic metric.

• Q. The mesh generator uses the same input data but produces different grids on different
computers.
A. The output of the mesh generator may depend on a computer arithmetics. The order of
local mesh modifications depends on round-off errors and may be computer-dependent .

• Q. The final mesh quality is very small.
A. The mesh quality equals to a quality of the worst triangle in the mesh. In some cases, the
shape of near-boundary triangles is driven mainly by the geometry. A possible remedy is either
to increase the number nEStar of desired triangles or to fix a possible contradiction between
the boundary and the metric. An example of such a contradiction is a quasi-uniform mesh in
data/Dam.*. Another reason for low mesh quality is strong jumps in the metric. If the metric
is isotropic, the optimal triangles are equilateral ones. The triangle size is defined by the metric
value. Therefore, the optimal size is strongly changed across lines of a metric discontinuity.
This property is hardly can be satisfied on a conformal mesh.

• Q. The mesh generator is stopped immediately with diagnostics saying that the parametrization
is wrong.
A. There is a contradiction between input data in arrays ParCrv, iFnc and XYP.

• Q. The number of triangles in the final mesh is never equal to nEstar.
A. The equality is achieved if and only if Quality = 1 and the computational domain may be
covered by equilateral (in the user given metric) triangles. Apparently, it is possible only in
very special cases.

• Q. Why Ani2D has so many input parameters?
A. Next version of Ani2D will have routines mesh metric short and mesh solution short with
functionality close to that of main routines mesh metric and mesh solution, respectively, but
with smaller number of input parameters. For example, lists of fix points and boundary triangles
will be omitted.

• Q. Is it possible to use Ani2D in an adaptive loop?
A. Yes. Use make lib to generate a library libani2D-1.3.a which may be linked with other
codes. Depending on the user goals, he or she may call either mesh metric or mesh solution.

• Q. Ani2D fails to untangle the mesh. Why?
A. This may happen when the initial mesh is either topologically incorrect or extremely tangled.
The second case is curable. Try to run the code with the identity metric or/and change
significantly the desired number of mesh elements.

• Q. I do not understand why Ani2D fails to generate a mesh.
A. The authors are very interesting in any feedback from the users. To report a problem, please
email to either lipnikov@hotmail.com or vasilevs@dodo.inm.ras.ru. To help us to fix the
problem, please attach file main metric.f or main solution.f and files containing the input
mesh.

12

9 Two more models

The first model is shown in Fig.5 (left picture). The left side of the model is partly curved. This part
is parametrized as follows:

x = 0.2 − 2 t (0.3− t), y = t, t ∈ [0, 0.3].

The curved part of the right side of the model is parametrized in a similar way:

x = 1 − 2 (1 − t) (t − 0.7), y = t, t ∈ [0.7, 1].

Figure 4: Two models: the square with curved sides and the wing.

The second model is shown in Fig.4 (right picture). We use one parametrization for the wing and
the other parametrization for the tail line (see file src/aniGEN/examples/main metric wing.f for
more detail).

References

1. Yu.Vassilevski and K.Lipnikov, An adaptive algorithm for quasioptimal mesh generation, Compu-

tational Mathematics and Mathematical Physics (1999) 39, No.9, 1468–1486.

2. A.Agouzal, K.Lipnikov, Yu.Vassilevski, Adaptive Generation of Quasi-optimal Tetrahedral Meshes,
East-West Journal (1999) 7, No.4, 223–244.

3. K.Lipnikov, Y.Vassilevski, Parallel adaptive solution of 3D boundary value problems by Hessian
recovery, Comput. Methods Appl. Mech. Engrg. (2003) 192, 1495–1513.

4. K.Lipnikov, Yu. Vassilevski, Optimal triangulations: existence, approximation and double differ-
entiation of P1 finite element functions, Computational Mathematics and Mathematical Physics (2003)
43, No.6, 827–835.

5. K.Lipnikov, Yu.Vassilevski, On a parallel algorithm for controlled Hessian-based mesh adaptation.
Proceedings of 3rd Conf. Appl. Geometry, Mesh Generation and High Performance Computing,
Moscow, June 28 - July 1, Comp. Center RAS, V.1, 2004, 154–166.

6. K.Lipnikov, Yu.Vassilevski, On control of adaptation in parallel mesh generation. Engrg. Comput-

ers (2004) 20, 193–201.

13

10 Appendix A

Figure 5: The initial and final meshes of a model country.

14

