
Ani2D-FEM Version 1.3

Generator of Finite Elements Matrices

on Triangular Meshes

User’s Guide
December 1, 2005

1997-2005



1 Introduction

The Fortran package Ani2D-FEM is developed by Konstantin Lipnikov and Yuri Vas-
silevski. It is designated for generating finite element matrices on triangular meshes.
The package allows to build elemental matrices for variety of finite elements, assemble
these matrices, and impose boundary conditions. The package differ from other similar
packages by providing a very flexible interface for incorporating problem coefficients in
elemental matrices.

The library libfem2D-1.3.a must be built to incorporate our code into other pack-
ages. The package Ani2D-FEM can be used only for generating elemental matrices (no
matrix assembling) which increase its usefulness for the user.

This document describes a structure of the package, input data, and user-supplied
routines. It presents a few examples illustrating details of the package.

2 Copyright and Usage Restrictions

The software is made available for nonprofit use only. You may copy and use this
software without any charge, provided that the COPYRIGHT file is attached to all copies.
For all other uses please contact one of the authors.

The software is made available “as is” without any assurance that it will work for
your purposes. The authors are not responsible for any damages caused by using this
software.

3 Description of Ani2D-FEM

3.1 Elemental finite element matrix

The core of the package is routine fem2Dtri which computes elemental matrix corre-
sponding to the bilinear form

< D OpA(u), OpB(v) > (1)

where D is a tensor, OpA and OpB are linear operators, and u and v are finite element
functions. Here is the list of implemented finite elements (see file fem2Dtri.f for more
detail):

FEM P0 piecewise constant, P0

FEM P1 continuous piecewise linear, P1

FEM P2 continuous piecewise quadratic, P2

FEM P1vector vector continuous piecewise linear, P1 × P1. The un-
knowns are ordered first by vertices and then by the
space directions (x and y)

FEM 4P1vector piecewise linear on the uniform partition onto 4 triangles
FEM RT0 the lowest order Raviart-Thomas finite elements

2



Here is the list of available operators (see file fem2Dtri.f for more detail):

IDEN identity operator
GRAD gradient operator
DIV divergence operator
CURL rotor operator
DUDX partial derivative d/dx

The package allows a few types of tensor D to make computations more efficient.
Here is the list of supported tensors.

TENSOR NULL identity tensor
TENSOR SCALAR scalar tensor
TENSOR SYMMETRIC symmetric 2x2 tensor
TENSOR GENERAL general 2x2 tensor

The package has a few quadrature formulae:

order = 1 quadrature formula with one center point
order = 2 quadrature formula with 3 points on triangle edges

A solution of non-linear problems is usually based on a Newton-type iterative
method. In this case D may depend on a discrete function (e.g. approximation from
the previous iterative step). If this is the case, evaluation of D may be quite com-
plex and may require additional data. We provide the user the flexible mechanism for
incorporating additional data via external function. Let Dcoef be the name of this
function. It has the following format

Subroutine Dcoef(x, y, DATA, iSYS, Diff)

C (x, y) - [input] Real*8 Cartesian coordinates of a 2D

C point where tensor Diff should be evaluated

C

C DATA - [input] Real*8 user given data (a number or an array)

C

C iSYS - [input/output] integer buffer for information exchange:

C iD = iSYS(1) [output] number of rows in Diff

C jD = iSYS(2) [output] number of columns in Diff

C lbE = iSYS(3) [input] label of a mesh element

C bc = iSYS(4) [output] type of the boundary condition

C (not required for assembling routines)

C 1=BC_DIRICHLET, 2=BC_NEUMANN, 4=BC_ROBIN

C Diff(iD,jD) - [output] Real*8 matrix, the tensor

To compute tensor entries, the user may use information from array DATA and the
element label iSYS(3). Here are the few examples.

3



• isotropic diffusion problem. The user has to set iD = jD = 1 and return the
diffusion value at the point (x, y).

• anisotropic diffusion problem. The user has to set iD = jD = 2 and return
diffusion tensor (2x2 matrix) at the point (x, y).

• convection problem. The user has to set iD = 1, jD = 2 and return the velocity
vector value at the point (x, y).

In order to compute a linear form, we can use the following trick:

f(v) =< D v, FEM P0 > (2)

where D represents the function f .
Now we are ready to call function fem2Dtri.

Call FEM2Dtri(

& XY1, XY2, XY3,

& OpA, FemA, OpB, FemB,

& Dcoef, DATA, iSYS, tensor, order,

& LDA, A, nRow, nCol)

C XYi(2) - [input] real*8 Cartesian coordinates of i-th vetrex

C OpA, OpB - [input] operators from (1), integers

C FemA, FemB - [input] type of finite elements from (1), integers

C

C Dcoef - [input] external function using DATA and iSYS

C tensor - [input] type of the tensor, integer

C order - [input] accuracy of the numeric quadrature, integer

C

C LDA - [input] leading dimension of matrix A(LDA, LDA)

C A(LDA,LDA) - [output] real*8 finite element matrix A

C nRow - [output] the number of rows of A

C nCol - [output] the number of columns of A

The following rules are applied for numbering unknowns:

• First, basis function associated with vertices are numerated in the same order as
the vertices ri, i = 1, 2 and 3.

• Second, basis function associated with edges are numerated in the same order as
edges r12, r13 and r23.

• The vector basis functions with 2 degrees of freedom per a mesh object (vertex,
edge) are enumerated first by the corresponding mesh objects and then by the
space coordinates, first x and then y.

4



3.2 Assembling utilities

The package provides a few utilities for assembling elemental matrices and right hand
sides. The assemble routine returns a sparse matrix is the format required by the
AMG solver. Other formats will be supported in the nearest future or by request. The
converters are in file algebra.f. Here is example of calling the assemble routine. We
describe only the new parameters.

Subroutine BilinearFormVolume(

& nP, nE, XYP, IPE, lbE,

& OpA, FemA, OpB, FemB,

& Dcoef, DATA, tensor, order,

& status, MaxIA, MaxA, IA, JA, DA, A, nRow, nCol,

& MaxWi, iW)

C nP - [input] the number of points (P)

C nF - [input] the number of edges (F)

C nE - [input] the number of elements (E)

C

C XYP(2, nP) - [input] real*8 Cartesian coordinates of mesh points

C IPF(4, nF) - [input] connectivity list of boundary faces

C IPE(3, nE) - [input/output] connectivity list of elements.

C On output, each column is ordered by increasing.

C

C lbF(nF) - [input] boundary identificator

C lbE(nE) - [input] element identificator

C

C status - some a priori information about the matrix A. The

C logical sum of constants defined in assemble.fd.

C MATRIX_SYMMETRIC - symmetric matrix

C MATRIX_GENERAL - general matrix

C

C FORMAT_AMG - format used in AMG

C FORMAT_ROW - diagonal of A is saved only in DA

C

C MaxA - the maximal number of nonzero entries in A

C IA,JA,DA,A - sparcity structure of matrix A:

C

C IA(nRow + 1) - IA(k + 1) equals to the number of

C nonzero entries in first k rows plus 1

C JA(M) - column indexes of non-zero entries ordered

C by rows, M = IA(nRow + 1) - 1

C

C A(M) - non-zero entries ordered as in JA

5



C DA(nRow) - main diagonal of A

C

C nRow - [output] the number of rows in A

C nCol - [output] the number of columns in A

C

C MaxWi - the size of the working integer array

C

C iW(MaxWi) - the integer working array.

Here is an example of assembling the right-hand side vector F(nRow) for the linear
form (2).

Subroutine LinearFormVolume(

& nP, nE, XYP, IPE, lbE,

& FemA,

& Dcoef, DATA, order,

& F, nRow,

& MaxWi, iW)

4 Examples

4.1 Elliptic problems

The package Demo2 (type make demo2 in the root directory or make exe run gs in
directory src/Demo2) demonstrates the iterative adaptive solution of the boundary
value problem:

−div(D gradu) = 1 in Ω,

u = 0 on ∂ΩD,
∂u

∂n
= 0 on ∂ΩN ,

where Ω is the segment of the unit disk,

Ω = {(x, y) : x2 + y2 < 1, x < 0 or y > 0}.

The boundary of Ω consists of two pieces ∂ΩD and ∂ΩN where

∂ΩN = {(x, y) : x = 0, −1 < y < 0}.

The diffusion coefficient D is the diagonal piecewise constant tensor given by

D = diag{10, 10} for x < 0,
D = diag{1, 100} for x > 0.

The package Demo2 generates an adaptive mesh and saves it in file hba.ps.

6


