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1. Introduction 
 
 Meshless Finite Difference Method (MFDM), which belongs to the wide group of 
intensively developed meshless methods, is one of basic engineering tools for practical 
analysis of the boundary value problems. It constitutes a generalization of the Finite 
Difference Method (FDM) for arbitrarily irregular clouds of nodes. Moreover, characteristic 
feature of the MFDM is the generation of the local approximation of the unknown function, 
which is performed by means of the Moving Weighted Least Squares (MWLS) 
approximation. The short historical background, method fundamentals as well as the most 
interesting extensions of the basic MFDM solution approach were described in the paper 
submitted to the Numerical Algorithms journal. Here attention is laid upon development of 
the appropriate computer codes based on the MFDM algorithms. 
 A general manner of designing computer codes pursuing b.v. problems using the 
MFDM, is presented in the following sections. Though all guidance is as much general as it 
may be, the exemplary codes have been prepared by the author using the Matlab technical 
language. Several aspects should be taken into the account while selecting the programming 
environment, for instance computational speed, availability of function libraries, results 
presentation abilities etc. In Matlab, mathematical background and graphical visualisation 
allow for fast and effective programming of designed numerical algorithms. Therefore, the 
main emphasis was laid here upon transforming fundamental aspects of the basic MFDM 
solution approach into the Matlab code. The code was optimized in order to reduce the usage 
of the "for" loop which has significant influence on the speed of program execution. 
However, this kind of loop appears in some procedures devoted to numerical integration or 
nodal collocation, in order to deliver more accessible and readable code. 
 
Correctly designed computational package should consist of three main parts, namely 

- pre-processor: domain and boundary determination, choice of b.v. problem 
formulation, description of material, geometry, load as well as very first (usually 
rough regular) cloud of nodes generation with a-posteriori determined topology 
(triangles, polygons, neighbours) and mesh for integration (if required), 

- processor (solver): MFD star generation at nodes and Gauss points, local MWLS 
approximation, generation of MFD operators and equations, numerical integration 
(when needed), boundary condition discretization, solution of linear SAE, 

- post-processor: general (MWLS) postprocessing of nodal results (e.g. calculating 
stresses from displacements, solution smoothing) as well as a-posteriori solution 
error estimation, adaptation of cloud of nodes as well as return to solver with new 
adapted cloud. 

 



MFDM toolbox manual - Meshless Finite Difference analysis in Matlab 

Sławomir Milewski slawek@L5.pk.edu.pl 2012-01  
Cracow University of Technology 
Civil Engineering Department 
Institute for Computational Civil Engineering 

 Here, attention was laid upon the implementation of the solver aspects. User's task is 
to generate the primary cloud of nodes, which may be regular one in the simplest case or a-
priori refined using e.g. geometry based criteria (concentration zones). Although the nodes 
generation for the meshless methods is much simpler than in the FE analysis, it remains a 
complex problem and it is not described here in more detailed way. However, some general 
ideas were already presented in the previous sections. 
 In Matlab, the simplest topology information (if required) may be prepared by 
applying several Matlab functions: delaunay (or delaunayn) and voronoi (or  voronoin). Refer 
to any Matlab documentation for more details. However, it should be pointed out that those 
functions generate triangles and polygons without any a-priori knowledge of the domain 
boundary. Therefore, additional user's procedure should be designed in order to eliminate 
incorrect (external) triangles as well as to rebuild polygons of the boundary nodes. Eventually, 
one should have list of all nodes coordinates, codes of boundary nodes (internal or boundary 
node) as well as list of all triangles and polygons (for global formulations and for 
postprocessing purposes).  
 
 

2. Definition of the model problem 
 

The following engineering problem was considered. Find total shear stress  
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in a prismatic bar of specified cross-section (e.g. rectangular or 2-T shaped) subjected to the 
torsion moment. Such problem may be posed in local formulation 
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as well as in the weak variational (Galerkin) one: Find such (trial) function 1
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Here, ( , )F F x y=   is a scalar Prandtl function (unknown primary solution), G  is a Kirchhoff 
modulus (material parameter) and θ   is a torsion angle (load). 
The local formulation (2) is a typical formulation for FDM, whereas the variational one (3) is 
commonly applied in the FEM analysis. 
Those user, who are not familiar with the mechanical applications, may treat those equations  
(2) and principle (3) as the specific formulations of the partial differential equation in 2D 
space. 
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Several separate m-files and one data file were prepared by the author of the paper. The 
software is available from Netlib (http://www.netlib.org/numeralgo/) as the na36 package. 
 
Installation of the prepared software is not very complicated. The user is supplied with one 
zip file (MFDMtool.zip), which contains one directory with all necessary files in it. This 
archive file should be uncompressed to the prescribed location. The only m-file from this 
directory, which may be run directly, is the TEST.m file. One may add the name of this 
directory to the Matlab search path in order to run this file from the Matlab Command Line. 
In other case, it should be open through the Matlab Editor and run, after the change of the 
Matlab Current Directory. Note that for any changes in the data structure (discussed below), it 
is required to have this file open in the Matlab Editor. 
Although all codes have been prepared and tested by means of the Matlab 7.7.0 (R2008b), 
they do not contain any functions or syntax, which may be untypical for most commonly 
applied Matlab versions. 
 
Below given is summary of all attached files: 

- "REAMME.m" 
- "star.m" - source code of the MFD star generation procedure, based on the distance 

criterion, 
- "localMFDM.m" - source code of the MFDM solution approach for problem posed 

in local formulation (2), 
- "varMFDM.m" - source code of the MFDM solution approach for problem posed 

in variational (Galerkin) formulation (3), 
- "postprocessingMFDM.m" - source code for the postprocessing based on the 

MFDM results and MWLS approximation technique, 
- "railroadrailDATA.txt" - required data for the MFDM analysis of the railroad rail. 
- "mwls.m" - the function file which contains the MWLS procedure in order to 

obtain the difference formulas for subsequent derivatives on the basis of the  m  
star nodes, approximation order (p) and smoothing parameter (g). 

- "TEST.m" - the script file, in which the discretization of the domain is prepared, 
dependently on the task type (task variable) and problem formulation (formulation 
variable).  

  Task: value "1" is for the rectangular domain (with a b×  cross section) whereas 
  value "2" is for the railroad rail domain (with appropriate data loaded from the 
  "railroadrailDATA.txt" file).  
  Formulation: value "1" is for local formulation whereas value "2" stands for 
  the variational weak (Galerkin) type.  

Moreover "TEST.m" runs the subsequent functions, displays the text results (e.g. 
primary nodal solution) as well as allows for simple visualization of the results 
(solution and its derivatives in form of the shear stress components). 

 
All m-files are source codes using Matlab function structures only. Author's comments are 
delivered in the most interesting and important lines of codes. In order to reduce the number 
of "for" loops, colon (:) and dot notations (.) are commonly applied. 
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3. Matlab code for the local formulation 
 

 The Matlab code which implements the MFDM analysis of (2), is organized here in 
the form of three Matlab functions. They are implemented in three separate m-files (files with 
function codes in Matlab, named after functions names). They may be placed in the same 
main file as the so-called subfunctions. In such case, they may be only called from the main 
(first in m-file) function. Therefore, actual main function - localMFDM - uses two 
subfunctions, namely star and mwls.  Those three subfunctions may be called independently 
from the Command Window of the Matlab interface, as they are functions with argument 
variables. Those current arguments required for running of the localMFDM are as follows 
 

function header: F = localMFDM(N,X,Y,BC,G,teta) 
-- Arguments list: 
N - number of nodes 

X (N x 1) - x-coordinates of nodes 
Y (N x 1) - y-coordinates of nodes 

BC (N x 1) - boundary codes of nodes (0 - internal node, 1 - boundary node) 
G - shear modulus 

teta - torsional angle (load) 
-- Return values list: 

F (N x 1) - nodal values of Prandtl function (primary MFDM solution) 
 

The exemplary values of these parameters are given in the "TEST.m" file. It has to stressed 
that for the first task, the total number of nodes N is evaluated using N = x yn n×   formula, in 

which the xn  and yn  denote the number of nodes in the x and y directions, respectively. In the 

case of the second task, the total number of nodes N  is loaded from the appropriate disc file. 
 
In case of the local formulation, only one main loop over all nodes is required. Therefore, the 
program code may be transferred from the classical version of the FD method, if available. 
Before entering this loop, both global coefficient matrix  A (global stiffness matrix in FEM) 
and right hand side vector B (global load vector in FEM) are filled with zeros (function 
zeros). Afterwards, default number of nodes in MFD star (m=9) is prescribed. This number 
cannot exceed the total number of nodes (m≤ N), however it is usually significantly smaller. 
The main task of this loop over nodes is to examine the node code (BC) and to perform 
specified actions. 
 
For BC code = 0 (internal node), the discrete MFD equation corresponds to the differential 
equation from inside the domain.  
In that case, the MFD operators for second order derivatives have to be generated. Therefore, 
m nodes for a MFD star at subsequent internal nodes (here, coordinates X(i), Y(i), which 
correspond to the standard notion ( ),i ix y ), are classified. This is achieved by the function 

star, which code is given in the separate m-file. 
 

function header: [S] = star(N,x,y,X,Y,m) 
-- Arguments list: 

N - total number of nodes 
x,y - coordinates of the considered point 

X (N x 1) - x-coordinates of nodes 
Y (N x 1) - y-coordinates of nodes 
m - number of nodes in the MFD star 

-- Return values list: 
S (m x 2) - nodes numbers collection of the MFD star 
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The MFD star generation is based here on the simplest possible distance criterion - numbers 
(i) of all nodes and their distance to the central point (here, point (x, y) which corresponds 

with the notion  from the main article ( ),x y  of the MFD star ( ( ) ( )2 2

i i ix x y yρ = − + − ) are 

stored in the array S. Elements of such array are sorted in the ascending order (function 
sortrows), according to the nodes-central point distance. Finally, only information concerning 
the first  m  nodes is stored. 
Function star returns the nodes configuration of the MFD star S to the main program. It is 
used as a support for local MWLS approximation of order p=2. This is performed by means 
of the following function, named mwls.  
 

function header: [M] = mwls(x,y,X,Y,S,m,p,g) 
-- Arguments list: 

x,y - coordinates of the considered point 
X - x-coordinates of nodes 
Y - y-coordinates of nodes 

S (m x 2) - nodes numbers collection of the MFD star 
m - number of approximation data (points) 

p - approximation order (optional value p = 2) 
g - smoothing parameter (optional value g = 0 - no smoothing) 

-- Return values list: 
M ((p+1)(p+2)/2 x m) - matrix of the MFD formulas (for local derivatives of 

0,1,...,p orders) 
 
Function  mwls  uses approximation point coordinates (x,y), set of all nodes coordinates (X,Y) 
as well as on MFD star configuration S, number of star nodes m as well as optional 
parameters: approximation order p (default value: 2 - quadratic local approximation), and 
smoothing parameter g (default value: 0 - no smoothing). Dependently on  p, the number of 
Taylor series terms (s) is equal to 6 (for p=2) or 3 (for p=1). As mentioned above, the default 
value of  g  is equal to 0. Therefore, weights become singular at the central point of the MFD 
star. This crucial feature of the algorithm assures interpolation there, despite the fact that the 
one determines the local approximation (usually with greater number of nodes that it is 
required from the approximation order). Moreover, the smoothing technique for non-zero 
value of  g  is commonly applied in the final postprocessing of the results and will be 
discussed in more detailed manner in the following sections. 
 
The subsequent procedures are applied in order to obtain the subsequent rows of matrix P (see 
main article for more details) as well as for allocating the diagonal elements of the weight 
matrix W. These are singular weights, already given in the second power, with a smallest 
number possible (Matlab working precision 1510−≈ ) added in the denominator to avoid 
division by ideal zero while evaluating MFD formulas at nodes (in which appropriate distance 
is zero one). In such case, one of the diagonal elements of  W  tends to infinity. This feature 
does not appear in case of variational formulation or numerical integration, in which one has 
to evaluate MFD formulas at Gauss points located between the nodes. 
The final MFD formulas matrix M is obtained according to formula which implicates from 
the minimisation of the average weighted squared error. The subsequent rows of  M  are the 
MFD formulas for the subsequent derivatives from the 0-th order (function) to the p-th order 
(y partial derivative), respectively. Its number of rows is equal to s (s=6 for p=2), and number 
of columns is equal to m (number of nodes in the MFD star). 
 
After generation of the MFD formulas, the matrix M is returned to the main program.  
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The appropriate terms in the i-th row of the global matrix A are filled with the terms of M. 
These MFD formulas correspond to the second derivatives in the differential equation from 
inside the domain (2) 
 

 ( )( )
( )

( )
2 2

2
4, 6, ( )2 2,

1,
i i

i i

m

j j j ix y
jx y

F F
F M M F

x y =

 ∂ ∂∇ = + ≈ + ∂ ∂ 
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In the same main loop, the subsequent term of the right hand side vector B is filled. In this 
simple case, the right hand side function of the differential equation (2) is constant and does 
not depend on the coordinates of the collocation point ( ),i ix y . 

 
For BC code = 1, boundary equation from (2) should be fulfilled at boundary node (i). 
Consequently, only the diagonal element in the i-th row of the matrix A is non-zero one and is 
equal to 1 (after  0iF = ). 

 
Algorithm is completed by solution of the non-singular set of MFD equations. 
 
Several remarks should be noted 

- MFD equations are constructed node-by-node, in each case difference collocation 
is applied in order to generate one equation, 

- no numerical integration is required, 
- no aggregation is required, 
- no additional rebuilding of the final MFD equations for fulfilment of boundary 

conditions is required. 
 
Moreover, no boundary approximation was needed because of essential boundary conditions 
only. However, this Matlab function may easily generalised for natural boundary conditions, 
e.g. by coding BC="2" those nodes that are located on the boundary N∂Ω  and by spanning 

local approximation with at least the same order as it is assumed inside the domain. The MFD 
formulas, required for boundary collocation, depend on differential operator from the 
boundary. Program code may be also generalised for any given non-constant right hand side 
function ( ),f x y . 

 
4. Matlab code for the variational formulation 
 

 Designing a code for analysis of variational formulation is much more complex task 
than in the case of the local formulation. Only weak symmetric variational (Galerkin) b.v. 
problem formulation (3) is considered here. Such global formulation is commonly applied in 
other discrete methods, especially in the FE analysis. Therefore, an appropriate FE code may 
be selected and rearranged in order to span local approximation in the meshless manner - 
without any imposed structure like element in the FEM. Among several possible integration 
techniques, background triangular mesh will be adopted here, due to the simplicity in 
generation Delaunay triangles in Matlab and the order of the derivatives in the variational 
principle (odd order requires integration between the nodes - one may expect better quality in 
results then). This fact may cause some controversy since it is a mesh-like structure. However, 
though triangles are used for integration, local approximation of the trial function (F) should 
be prescribed in terms of nodes only. Therefore, the method remains meshless. 



MFDM toolbox manual - Meshless Finite Difference analysis in Matlab 

Sławomir Milewski slawek@L5.pk.edu.pl 2012-01  
Cracow University of Technology 
Civil Engineering Department 
Institute for Computational Civil Engineering 

 
The Matlab code for variational formulation uses one main function varMFDM and the same 
subfunctions (star and mwls) that were described in detailed manner in the previous section. 
Here, considered will be those parts of the main function, which are significantly different 
from the localMFDM function. 
 

function header: F = varMFDM(N,X,Y,BC,T,nt,G,teta) 
-- Arguments list: 
N - number of nodes 

X (N x 1) - x-coordinates of nodes 
Y (N x 1) - y-coordinates of nodes 

BC (N x 1) - boundary codes of nodes (0 - internal node, 1 - boundary node) 
T (nt x 3)- list of triangles 

nt - number of triangles 
G - shear modulus 

teta - torsional angle (load) 
-- Return values list: 

F (N x 1) - nodal values of Prandtl function (primary MFDM solution) 
 
First of all, the argument list was broaden to include list of Delaunay triangles (array T) and 
their total number (scalar variable  nt).  
 
The default number of Gauss points nG in triangles equal to 3 was adopted. This number of 
Gauss points provides sufficient approximation order for the integrands. Appropriate 
integration weights are defined a-priori, whereas specific locations of the Gauss points (arrays 
Gpx and Gpy), transformed from triangular coordinates (see Fig.1) are computed separately 
for subsequent triangles (integration elements). Any other configuration of integration points 
and weights may be easily substituted to the code. Various options are gathered in Tab.1. Any 
of those integration schemes should produce reasonable results, however it is recommended to 
avoid Gauss points with negative weights (here, scheme with 4 integration points). 
 

No. 
Number of Gauss 

points 
x; y coordinates of Gauss points Weights  ω  

1 1 ( ) ( )1 2 3 1 2 3

1 1
;

3 3
x x x y y y+ + + +  1 

2 3 
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1 2 1 2

2 3 2 3

1 3 1 3

1 1
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2 2
1 1

;
2 2
1 1

;
2 2

x x y y

x x y y

x x y y

+ +

+ +

+ +

 
1 1 1

, ,
3 3 3

 

3 4 

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

;

0.6 0.2 0.2 ; 0.6 0.2 0.2

0.2 0.6 0.2 ; 0.2 0.6 0.2

0.2 0.2 0.6 ; 0.2 0.2 0.6

x x x y y y

x x x y y y

x x x y y y

x x x y y y

+ + + +
+ + + +
+ + + +
+ + + +

 
27 25 25 25

, , ,
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−  



MFDM toolbox manual - Meshless Finite Difference analysis in Matlab 

Sławomir Milewski slawek@L5.pk.edu.pl 2012-01  
Cracow University of Technology 
Civil Engineering Department 
Institute for Computational Civil Engineering 

4 7 

( ) ( )1 2 3 1 2 3

1 1 1 2 1 3 1 1 1 2 1 3

1 1 1 2 1 3 1 1 1 2 1 3

1 1 1 2 1 3 1 1 1 2 1 3

2 1 2 2 2 3 2 1 2 2 2 3

2 1 2 2 2 3 2 1 2 2 2 3

2 1 2 2 2 3 2 1 2 2 2 3

1

1 1
;

3 3
;

;

;

;

;

;

0.

x x x y y y
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b x a x b x b y a y b y

b x b x a x b y b y a y

a x b x b x a y b y b y

b x a x b x b y a y b y

b x b x a x b y b y a y

a

+ + + +

+ + + +
+ + + +
+ + + +
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= 1

2 2

0597158717; 0.4701420641

0.7974269853; 0.1012865073

b

a b

=
= =

 

0.2250000000

0.1323941527

0.1323941527

0.1323941527

0.1259391805

0.1259391805

0.1259391805

 

Tab. 1: Various configurations of Gauss points and integration weights for triangle with vertices at points 

( ) ( ) ( )1 1 2 2 3 3, , , , ,x y x y x y  

 
The main loop (k) is performed over the integration elements (triangles  , 1...k tT k n= ) and it 

constitutes the equivalent structure to the FE code, when such loop would be run over the 
elements. The nodes numbers of the k-th triangle and their coordinates are received from the 
topology array T. Afterwards, the locations of 3 Gauss points (points in the middle of triangle 
sides) are computed. The next lines of code are devoted to computation of the Jacobian kJ  

(determinant of the transformation Jacobi matrix), which is equal to the area of triangle with 
lengths , ,a b c  of its sides . The well-known Heron's formula is applied here 
 

 ( )( )( ) ,
2k

a b c
J p p a p b p c p

+ += − − − =  (5) 
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Fig. 1: Integration triangle 



MFDM toolbox manual - Meshless Finite Difference analysis in Matlab 

Sławomir Milewski slawek@L5.pk.edu.pl 2012-01  
Cracow University of Technology 
Civil Engineering Department 
Institute for Computational Civil Engineering 

 
The most interesting part of this code starts from the loop (p) over Gauss points in the 
specified (k) triangle. The MFD star with additional nodes is generated at every Gauss point 
using the same distance-based criterion and the same Matlab function (star) as for the local 
formulation. Moreover, the MFD star still constitutes the one and only support for 
approximation of the trial function. Here, the order of approximation may be reduced to 1 due 
to the requirements for the trial function in the variational principle (2). The (mwls) function 
produces the MF ( ( )FM ) MFD formulas matrix for the trial function F. The approximation 
support for the test function  v  differs with the size of the MFD star. The MFD star for the 
test function  v  is established for three nearest nodes which are located in vertices of the k-th 
triangle. This feature is identical for both the MFDM and FEM approaches. The test function 
v  has to be interpolated (matrix Mv - ( )vM ) on the integration subdomain. Otherwise, it 
provides additional non-zero residual error to the system of MFD equations. It is worth 
stressing that it does not disrupt the meshlessness of the approach as the integration triangle 
does not have any influence on the approximation support of the trial function  F. It has to be 
mentioned here, that the triangular integration mesh is only one of the several various 
approaches for numerical integration in the meshless methods. It was chosen here mainly due 
to the fact of the simplicity of triangles generation in Matlab (one built-in procedure for 
Delaunay triangles). The other approaches, which may be associated with the term "meshless" 
in more direct manner, include the local-global Petrov-Galerkin approaches (proposed by 
S.Atluri), in which the test function may be constant over the specified subdomain, usually 
prescribed to each node. Such domain has simple geometrical shape (rectangle, circle) and 
may determined totally independently from the cloud of nodes. 
 
In case of global approach, the aggregation is required. It is performed in the same manner as 
in the FEM, i.e. in the form of the summation of the matrix and vector terms in each 
integration subdomain. The appropriate terms of both global matrix A and vector B are 
aggregated in according to the formulas that result from the discrete form of the variational 
principle (3) 
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 (7) 

 
 
Imposition of the homogeneous essential boundary conditions requires additional 
modification of the global matrix and vector. If BC code of subsequent i-th node is equal to 1, 
the appropriate i-th row and i-th column of global matrix A and i-th element of B are reset as 
well as the diagonal i-th element of A is set to 1. This is the same technique as commonly 
applied in the FEM. It is organized here in the form of several subsequent matrix 
transformations which will run faster than one loop over all nodes. It may be generalized for 
non-homogeneous conditions as well. Algorithm is completed by solution of the non-singular 
set of the MFD equations. 
 
Several remarks may be noted 
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- solution algorithm involves numerical integration, performed here between the 
nodes over triangles (most effective option for odd order of the differential 
operators), as in the FEM for triangular elements, 

- MFD formulas are computed at Gauss points rather than at nodes, 
- trial (unknown) function F is approximated on the MFD star with greater number 

of nodes than it is required for the assumed approximation order, 
- approximation order of the trial function may be reduced to 1 (p=1), 
- test function is interpolated (with order p=1) on the integration subdomain only, 

without any additional nodes, 
- aggregation of both the global matrix and global vector is required and it is 

performed in the same manner as in the FEM, 
- imposition of the essential boundary condition is based on the reconstruction of the 

global matrix and vector and it is performed in the same manner as in the FEM. 
 
Moreover, above given code may be simply extended for the imposition of the natural 
boundary condition (e.g. edge loading). The loop over triangles edges is necessary in order to 
introduce additional elements to the global vector B for those nodes which are located on the 
boundary subjected to natural conditions. 
 

5. General postprocessing of the results 
 
 As the result of the solution of the MFD equations, one obtains the nodal values of the 
Prandtl function F. Here, considered is calculation of the stress components as well as total 
shear stress (1). The postprocessing may be performed at arbitrary point of the domain or its 
boundary as well as on the chosen subdomain. In the first case, only local value is sought and 
it is computed directly by means of the MWLS approximation. In the second case, one need 
to integrate over chosen subdomain (e.g. triangle or polygon) or over the whole domain. The 
MWLS approximation is sought then at every Gauss point. Such approach is commonly 
applied in order to visualize the results in computer programs. Integral values inside the 
triangles may be also helpful in adaptive analysis. Some additional MWLS techniques, for 
instance smoothing and filtering of the rough numerical results, may be included as well. 
 

function header: [StrN,StrT,Res] = postprocessingMFDM(N,X,Y,T,nt,F,G,teta) 
-- Arguments list: 
N - number of nodes 

X (N x 1) - x-coordinates of nodes 
Y (N x 1) - y-coordinates of nodes 

T (nt x 3)- list of triangles 
nt - number of triangles 

F (N x 1) - nodal values of Prandtl function (primary MFDM solution) 
G - shear modulus 

teta - torsional angle (load) 
-- Return values list: 

StrN (N x 3) - array of stresses at nodes: componet tzx, component tzy and total 
value tz 

StrT (nt x 3) - array of stresses at triangles: componet tzx, component tzy and 
total value tz 

Res (nt x 1) - vector of residual error 
 
Large parts of already implemented codes may be applied here with small changes only. The 
list of postprocessing arguments may consist of the same items as in the previous examples, 
with additional items for the nodal values (vector F) of the primary solution (calculated nodal 
values of the Prandtl function). Results of both local and variational approaches may be 
substituted here. The number of nodes for the MFD stars should be greater (e.g. m=16) when 
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compared with the number applied for the MFD formulas generation. Calculation of nodal 
stresses requires one loop. At each node, the MFD star and MFD formulas are generated. For 
the postprocessing, it is recommended to use non-singular weights, e.g. in the form proposed 
by W.Karmowski  
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where ρ  is a distance between central star point and its specified node and g is a small 
parameter, that defines the rank of the data smoothing. When g ≠ 0, smoothing is applied. 
When g = 0, no smoothing occurs and the weights in formula (8) become singular (rough 
interpolation is provided). So far, the mwls function was applied for derivatives 
approximation and g = 0 in order to impose the interpolation in the central point (e.g. node) of 
the MFD star (the Kronecker delta property). Here, assumed is g > 0. 
 
The MFD formulas are applied in order to obtain the nodal values of the partial derivatives of 
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which are necessary for computation of stresses (9). Afterwards, the mean integral values 
(forces) of stresses (9) as well as residual error of the local formulation (2) 
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are evaluated over each triangle T 
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As in the case of the standard variational approach, only 3 Gauss points may be assumed. The 
MFD stars and MFD formulas are generated at every Gauss point in order to approximate the 
integrals (11). For instance, given is the following discrete value of the global residual error 
(10) evaluated for triangle T 
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6. Numerical results 

 
Matlab implementation of the basic steps of the MFDM solution approach was 

considered. Examples may concern the following aspects 
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- the impact of nodes irregularity on the final results, 
- various domain shapes and construction of the boundary, 
- various types of benchmark problems (shear analysis, plane stress analysis, plate 

deformation etc), 
- comparison of the results obtained for local and variational formulations, 
- the effectiveness of the final results postprocessing. 

 
Let us consider a rectangular domain with length (a) and width (b) equal to 2. 

Prismatic bar with such rectangular cross-section is subjected to torsion. Appropriate b.v. 
problem may be posed locally (2) at each point, or globally (3) by means of the variational 
principle.  
 

In the "TEST.m" file, defined are all parameters required for the proper program 
functioning. For sake of simplicity, assumed (non-physical) are non-mechanical test values of 

G = 1 and 
6

πθ = . The variable  task  may be assumed as "1" or "2". 1 is for the rectangular 

domain, whereas 2 is for the railroad rail domain. In case of the rectangular domain (task = 1), 
the user has to define the dimensions  a  and  b  of the rectangle as well as the number of 
nodes in the x and y directions (parameters nx and ny).  The variable formulation is 
responsible for the b.v.p. formulation type: local ("1") or global (variational weak - "2"). 
 
Below presented are the Matlab results for the regular mesh generation in the rectangle after 
assuming 933 =×=N  nodes, with regular spacing 1== yx hh , consequently numbered 

from 1 to 9. Thus only one unknown function value (middle node 5) is sought ( ?5 =F ). The 

well-known Matlab function meshgrid is applied in order to generate regular mesh in the 
rectangle, while the array of triangles (T) may be obtained by means of the other Matlab 
function, delaunay. 
   
Potential users are encouraged to run the "TEST.m" file for nx = ny = 3. The proper values of 
the domain discretization should be as follows 

- X = [0 1 2 0 1 2 0 1 2], 
- Y = [0 0 0 1 1 1 2 2 2], 
- BC = [1 1 1 1 0 1 1 1 1], 
- N = 9. 
 

The properly implemented code for local formulation should provide value 0.31415935 =F , 

whereas the variational one should yield  0.4405185 =F . The results for the denser mesh 

(with  4002020 =×=N  nodes) are as follows. The maximum value of F is equal to 
0.30715max =F  for the local formulation, whereas it is equal to 0.30832max =F  for the 

variational one. 
Additionally, in the "TEST.m" file implemented were some simple visualization procedures. 
As the result of the program run, one figure appears, divided into the four independent graphs. 
In each graph, various quantity is shown: the Prandlt function (F), the stress components  zxτ  

and  zyτ   as well as the total shear stress zτ . The only Matlab function, which was used here, 

is the patch function which draws the filled polygon defined by three vectors of space 
coordinates as well as one colour parameter. 
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Fig.2 presents the final results of the MFDM analysis of the local formulation (2) for denser 
irregular cloud with 4002020 =×=N  nodes for rectangular bar with a = b = 1 cross-section 
dimensions. Shown are: the Prandtl function F distribution (top left), shear stress zxτ  (top 

right), shear stress zyτ   (bottom left) as well as the total shear stress zτ   (bottom right). 

 
Fig.3 presents the results of the variational analysis, for the 2-T shaped domain. The irregular 
cloud with 462 nodes (for trial function approximation) and 766 triangles (for integration and 
visualization) was applied. Domain description, generation of nodes as well as construction of 
triangles are possible using only Matlab functions. The "TEST.m" does not contain the 
appropriate geometry and discretization data for such type of domain. Therefore, the users are 
encouraged to prepare and deliver such data on their own. 
 
Finally, MFDM results obtained for the railroad rail, by means of the variational principle, are 
presented in Fig.4. They may be treated as part of the residual stresses analysis, emerged from 
the technological process and wear. Users are encouraged to perform such evaluation on their 
own using data prepared by the author and delivered in the text file "railroadrailDATA.txt". 
At first, the total number of nodes (N) is given. Then nodes are described by their coordinates 
(X,Y) as well as the boundary code BC (0,1). Afterwards, the number of triangles (nt) is 
given, followed by list of all triangles (T), in which their vertices are prescribed by nodes 
numbers. It should be not complicated for users to read these data and substitute them 
(N,X,Y,nt,T) to any of two previously given functions (localMFDM and varMFDM). 
However, in the "TEST.m" file prepared is the set of appropriate procedures (file functions: 
fopen, fscanf and fclose), which is run after the following substitution: task = 2 in the 
beginning of the program code. 
 

 
Fig.2 Rectangular domain: MFDM results for local formulation: the Prandtl function and 
stress components 
 



MFDM toolbox manual - Meshless Finite Difference analysis in Matlab 

Sławomir Milewski slawek@L5.pk.edu.pl 2012-01  
Cracow University of Technology 
Civil Engineering Department 
Institute for Computational Civil Engineering 

 
Fig.3 2-T shaped domain: MFDM results for variational formulation: the Prandtl function and 
stress components 
 
 

 
Fig.4 Railroad rail domain: MFDM results for variational formulation: the Prandtl function 
and stress components 
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7. Comparison with the Finite Element Method algorithm 
 
It is worth to compare already obtained results of the MFDM solution approach with the 

results obtained by means of the standard Finite Element approximation technique. Let us pay 
attention on the variational Galerkin type formulation (3), fundamental  formulation for the 
element based discrete approach in most cases. After partitioning of the domain into the set of 
the non-overlapping elements (triangles, rectangles), it is required to fulfil the variational 
principle (3) on the finite elements separately. This integral approach may lead to several 
local matrix and vector quantities (stiffness matrix, mass matrix, load vector etc.) . 
Afterwards, one needs to aggregate the local quantities in order to produce the global set of 
algebraic equations. Therefore, the most important features which distinguish standard 
meshless and standard element based approaches, may be listed as follows: 

- element structure is required a-priori, as the main part of the domain 
discretization, 

- both test and trial functions are interpolated by means of the same basis (shape) 
functions, 

- the approximation of the unknown function is prescribed on the element 
(between the nodes), without any additional nodes or degrees of freedom (no 
least squares technique is required) 

- the interpolation schemes (usually of Lagrange or H'ermite type) are defined in 
the explicit manner, and do not require evaluation of interpolation values point 
by point. 

 
Moreover, the MFDM solution approach may be treated as the more general discrete 
approach, since it allows using of the arbitrary boundary value problem formulation (local, 
global, mixed), whereas the FEM uses the variational formulations only.  
 
In the present paper, two examples of implemented codes were discussed and tested. The 
second example concerns the variational formulation (3) and the meshless type of solution 
approach. It uses the triangular background mesh in order to perform the numerical 
integration (between the nodes). This type of integration is applied in the FEM analysis as 
well. Therefore, the program code for variational formulation using the meshless FMD and 
integration between the nodes (using the triangular cells), presented in the previous sections, 
may be transferred into the finite element code without any difficulties. Here, the only 
parameter, which has to be modified, is the size of the MFD star (the variable 'm' defined in 
the beginning of the varMFDM  function). It has to be equal to 3. What shall happen then? 
The number of nodes in the MFD star defined at Gauss points inside the triangles (three nodes 
located closest to the Gauss point are the triangle vertices) would guarantee function 
interpolation there (triangular finite elements with the linear interpolation, based on three 
nodal function values). No additional nodes from outside the triangle will be used, therefore 
the weight matrix  W  for the moving least squares approximation will not have any influence 
on the final results (no additional free degrees are available within the assumed approximation 
order). The MFD coefficient matrix M, consisting of the MFD formulas for subsequent 
derivatives up to the assumed  p-th, would present the values of the element shape functions at 
considered the Gauss point. It has to be stresses that in such case, the matrices in function 
varMFDM code, namely MF and Mv, would be the same (due to the same approximation 
order 1 and the same number of nodes in the MFD star).  
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The subsequent steps of the algorithm remain the same as for the MFDM analysis 
(aggregation, fulfilment of the essential boundary conditions, solution of the set of algebraic 
equations). However, the postprocessing of the nodal solution is expected to produce rather 
different results in both cases. Despite the low approximation order (p = 1) applied in case of 
the MFDM analysis, the stress fields will be continuous (it is presented in Fig.2, Fig.3 and 
Fig.4), due to the continuous global approximation (only the local approximation of the 1st 
order remains discontinuous). This feature will not occur in case of the FEM analysis 
conducted using software devoted to the FEM only. The stress fields should remain 
discontinuous due to the  0C  linear interpolation of the unknown function, unless any 
additional smoothing is applied. That is not the case here. Software delivered here reproduces 
the continuous derivatives fields using the MWLS approximation in each case. 
It is important to mention that only this type of MFDM analysis may be reduced to the FEM 
analysis by means of the small code modification only. The other criteria of nodes selections 
for the MFD star or the other integration techniques may lead to the different results, 
especially for the coarse meshes and may not have equivalent element based approach. 
 
Below presented are results of the FEM analysis of the prismatic bar with the rectangular 
cross-section a = b = 2 (task 1) 

- for   3 3 9N = × =   nodes, maxF  = 0.34907, 

- for 20 20 400N = × =  nodes, maxF  = 0.30475. 

 
No additional figures (for the FEM results) are shown here due to the fact that for every 
domain type and for the fine mesh with 400 nodes, individual graphs (e.g. Prandlt function  F 
distribution for local MFDM, variational MFDM and FEM)  are very closed to each other. 
Therefore, some deeper and comprehensive discussion concerning efficiency of the meshless 
and element based approaches as well as reasonable a-posteriori error estimation should be 
added. This should be the topic of the separate paper and the associated software and its 
instruction. 
 
However, it is worth to compare those results with the ones obtained for the variational 
principle (3) using the MFDM solution approach. Moreover, further MFDM and FEM 
calculations may be performed using delivered software, e.g. for different domain geometry 
and various number of nodes. 
 


