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1. Introduction

Meshless Finite Difference Method (MFDM), whichldegs to the wide group of
intensively developed meshless methods, is oneasfcbengineering tools for practical
analysis of the boundary value problems. It contg# a generalization of the Finite
Difference Method (FDM) for arbitrarily irregulatauds of nodes. Moreover, characteristic
feature of the MFDM is the generation of the loapproximation of the unknown function,
which is performed by means of the Moving Weightédast Squares (MWLS)
approximation. The short historical background, hodt fundamentals as well as the most
interesting extensions of the basic MFDM solutigpr@ach were described in the paper
submitted to the Numerical Algorithms journal. Hexttention is laid upon development of
the appropriate computer codes based on the MFQbtigims.

A general manner of designing computer codes mgsh.v. problems using the
MFDM, is presented in the following sections. Thbwgl guidance is as much general as it
may be, the exemplary codes have been preparedebguthor using the Matlab technical
language. Several aspects should be taken intadt@unt while selecting the programming
environment, for instance computational speed, lavidity of function libraries, results
presentation abilities etc. In Matlab, mathematicatkground and graphical visualisation
allow for fast and effective programming of designeumerical algorithms. Therefore, the
main emphasis was laid here upon transforming fonestdal aspects of the basic MFDM
solution approach into the Matlab code. The cods ey#imized in order to reduce the usage
of the "for" loop which has significant influencen dhe speed of program execution.
However, this kind of loop appears in some procesiutevoted to numerical integration or
nodal collocation, in order to deliver more acdelesand readable code.

Correctly designed computational package shouldisbof three main parts, namely

- pre-processor domain and boundary determination, choice of kproblem
formulation, description of material, geometry,doas well as very first (usually
rough regular) cloud of nodes generation with agrosi determined topology
(triangles, polygons, neighbours) and mesh fogiraton (if required),

- processor (solver) MFD star generation at nodes and Gauss pointal MWLS
approximation, generation of MFD operators and &gans, numerical integration
(when needed), boundary condition discretizatiofytson of linear SAE,

- post-processor general (MWLS) postprocessing of nodal resultg. (ealculating
stresses from displacements, solution smoothingyedsas a-posteriori solution
error estimation, adaptation of cloud of nodes all &s return to solver with new
adapted cloud.
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Here, attention was laid upon the implementatibthe solver aspects. User's task is
to generate the primary cloud of nodes, which maydgular one in the simplest case or a-
priori refined using e.g. geometry based critecantentration zones). Although the nodes
generation for the meshless methods is much sintp&er in the FE analysis, it remains a
complex problem and it is not described here inemdetailed way. However, some general
ideas were already presented in the previous sectio

In Matlab, the simplest topology information (iequired) may be prepared by
applying several Matlab functiondelaunay (or delaunayn) andvoronoi (or voronoin). Refer
to any Matlab documentation for more details. Hogvewt should be pointed out that those
functions generate triangles and polygons withawt a-priori knowledge of the domain
boundary. Therefore, additional user's procedurailshbe designed in order to eliminate
incorrect (external) triangles as well as to rebhpiblygons of the boundary nodes. Eventually,
one should have list of all nodes coordinates, safdooundary nodes (internal or boundary
node) as well as list of all triangles and polygaffisr global formulations and for
postprocessing purposes).

2. Definition of the model problem

The following engineering problem was considereddFRotal shear stress

T=T2 412, rzx=a—F , sz=g—l):( 1)

oy

in a prismatic bar of specified cross-section (eegtangular or 2-T shaped) subjected to the
torsion moment. Such problem may be posed in kocaiulation

2 2
P 9F - 260 in «Q
x> dy (2)

F=0 on 0Q

O%F =

as well as in the weak variational (Galerkin) oRigd such (trial) functionF OH, that for
any (test) functionvH, satisfied is

- OF v OF ov dQ =-2G6[vdQ 3)
ox 0x 0y oy o

Q

Here, F = F(x,y) is a scalar Prandtl function (unknown primaryusioh), G is a Kirchhoff

modulus (material parameter) afld is a torsion angle (load).

The local formulation (2) is a typical formulatibor FDM, whereas the variational one (3) is
commonly applied in the FEM analysis.

Those user, who are not familiar with the mechdrapalications, may treat those equations
(2) and principle (3) as the specific formulationfsthe partial differential equation in 2D
space.
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Several separate m-files and one data file werpapeel by the author of the paper. The
software is available from Netlilinitp://www.netlib.org/numeralgpas the na36 package.

Installation of the prepared software is not veoynplicated. The user is supplied with one
zip file (MFDMtool.zip), which contains one direcyowith all necessary files in it. This
archive file should be uncompressed to the presdribcation. The only m-file from this
directory, which may be run directly, is the TESTiihe. One may add the name of this
directory to the Matlab search path in order to this file from the Matlab Command Line.
In other case, it should be open through the Maldlor and run, after the change of the
Matlab Current Directory. Note that for any changethe data structure (discussed below), it
is required to have this file open in the Matlabt&d

Although all codes have been prepared and testeddans of the Matlab 7.7.0 (R2008b),
they do not contain any functions or syntax, whichy be untypical for most commonly
applied Matlab versions.

Below given is summary of all attached files:

- "REAMME.m"

- "star.m" - source code of the MFD star generatimtg@dure, based on the distance
criterion,

- "localMFDM.m" - source code of the MFDM solutionmpach for problem posed
in local formulation (2),

- "varMFDM.m" - source code of the MFDM solution apach for problem posed
in variational (Galerkin) formulation (3),

- "postprocessingMFDM.m" - source code for the pamipssing based on the
MFDM results and MWLS approximation technique,

- “railroadrailDATA.txt" - required data for the MFDldnalysis of the railroad rail.

- "mwls.m" - the function file which contains the MV8Lprocedure in order to
obtain the difference formulas for subsequent @gires on the basis of then
star nodes, approximation ordej &nd smoothing parametey) (

- "TEST.m" - the script file, in which the discretin of the domain is prepared,
dependently on the task typadk variable) and problem formulatiofofmulation
variable).

Task: value "1" is for the rectangular domain (wiaxb cross section) whereas
value "2" is for the railroad rail domain (witp@ropriate data loaded from the
"railroadrailDATA.txt" file).
Formulation: value "1" is for local formulation whereas vall@®' stands for
the variational weak (Galerkin) type.
Moreover "TEST.m" runs the subsequent functionspldys the text results (e.g.
primary nodal solution) as well as allows for simplisualization of the results
(solution and its derivatives in form of the sheiess components).

All m-files are source codes using Matlab functsiructures only. Author's comments are
delivered in the most interesting and importanésiof codes. In order to reduce the number
of "for" loops, colon (:) and dot notations (.) @@mmonly applied.
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3. Matlab code for the local formulation

The Matlab code which implements the MFDM analysig2), is organized here in
the form of three Matlab functions. They are impderted in three separate m-files (files with
function codes in Matlab, named after functions ee)nThey may be placed in the same
main file as the so-called subfunctions. In suckecshey may be only called from the main
(first in m-file) function. Therefore, actual maifunction - localMFDM - uses two
subfunctions, namelgtar andnmwls. Those three subfunctions may be called indepetyde
from the Command Window of the Matlab interface,tlasy are functions with argument
variables. Those current arguments required foningnof the localMFDM are as follows

function header: F = |ocal MMDM N, X, Y, BC, G tet a)
- Argunents list:
N - number of nodes
X (N x 1) - x-coordinates of nodes
Y (N x 1) - y-coordinates of nodes
BC (N x 1) - boundary codes of nodes (0 - internal node, 1 - boundary node)
G - shear nodul us
teta - torsional angle (load)
- Return values |ist:
F (N x 1) - nodal values of Prandtl function (primary M-DM sol ution)

The exemplary values of these parameters are givdme "TEST.m" file. It has to stressed
that for the first task, the total number of nofies evaluated using N \, xn formula, in

which then_andn, denote the number of nodes in the x and y diresficespectively. In the
case of the second task, the total number of nNdesloaded from the appropriate disc file.

In case of the local formulation, only one maindaaver all nodes is required. Therefore, the
program code may be transferred from the classiesdion of the FD method, if available.
Before entering this loop, both global coefficienatrix A (global stiffness matrix in FEM)
and right hand side vector B (global load vectorieM) are filled with zeros (function
zeros). Afterwards, default number of nodes in MFD gta=9) is prescribed. This number
cannot exceed the total number of nodex ), however it is usually significantly smaller.
The main task of this loop over nodes is to exantiree node code (BC) and to perform
specified actions.

For BC code = 0 (internal node), the discrete MKDation corresponds to the differential
equation from inside the domain.

In that case, the MFD operators for second ordevatéeves have to be generated. Therefore,
m nodes for a MFD star at subsequent internal nddese, coordinates X(i), Y(i), which

correspond to the standard noti()x],yi)), are classified. This is achieved by the function
star, which code is given in the separate m-file.

function header: [S] = star(N x,y, X Y, m
- Argunents list:
N - total number of nodes

X,y - coordinates of the considered point

X (N x 1) - x-coordinates of nodes

Y (N x 1) - y-coordinates of nodes

m - nunber of nodes in the MFD star

- Return values |ist:
S (mx 2) - nodes nunbers collection of the MFD star
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The MFD star generation is based here on the sghplessible distance criterion - numbers
(i) of all nodes and their distance to the cenp@iht (here, point (x, y) which corresponds

with the notion from the main articlgx, y) of the MFD star p, :\/(x -x)" +(y,-y)") are

stored in the array S. Elements of such array ared in the ascending order (function
sortrows), according to the nodes-central point distanagalfy, only information concerning
the first m nodes is stored.

Functionstar returns the nodes configuration of the MFD stao 3he main program. It is
used as a support for local MWLS approximation mafeo p=2. This is performed by means
of the following function, namenhwils.

function header: [M = mMs(x,y, X Y,S mp,Qq)
- Argunents list:
X,y - coordinates of the considered point
X - x-coordi nates of nodes
Y - y-coordi nates of nodes
S (mx 2) - nodes nunbers collection of the MFD star
m - nunber of approxi nation data (points)
p - approximation order (optional value p = 2)
g - snoothing paraneter (optional value g = 0 - no snoot hi ng)
- Return values |ist:
M((p+1)(p+2)/2 x m) - matrix of the MFD fornulas (for |ocal derivatives of
0,1,..., p orders)

Function mwis uses approximation point coordinates (x,y), $etlanodes coordinates (X,Y)
as well as on MFD star configuration S, number @fr :nodes m as well as optional
parameters: approximation order p (default value: duadratic local approximation), and
smoothing parameter g (default value: O - no sningjh Dependently on p, the number of
Taylor series terms (s) is equal to 6 (for p=2Bdfor p=1). As mentioned above, the default
value of g is equal to 0. Therefore, weights lbeesingular at the central point of the MFD
star. This crucial feature of the algorithm assunésrpolation there, despite the fact that the
one determines the local approximation (usuallyhwgteater number of nodes that it is
required from the approximation order). Moreovédre tsmoothing technique for non-zero
value of g is commonly applied in the final pastessing of the results and will be
discussed in more detailed manner in the follovaagtions.

The subsequent procedures are applied in orddstémnothe subsequent rows of matrix P (see
main article for more details) as well as for afiteg the diagonal elements of the weight
matrix W. These are singular weights, already giwremhe second power, with a smallest

number possible (Matlab working precisionl0™) added in the denominator to avoid
division by ideal zero while evaluating MFD formslat nodes (in which appropriate distance
is zero one). In such case, one of the diagonataatés of W tends to infinity. This feature
does not appear in case of variational formulatiomumerical integration, in which one has
to evaluate MFD formulas at Gauss points locatéaédren the nodes.

The final MFD formulas matrix M is obtained accargito formula which implicates from
the minimisation of the average weighted squarear.efThe subsequent rows of M are the
MFD formulas for the subsequent derivatives from @qth order (function) to the p-th order
(y partial derivative), respectively. Its numberrofs is equal to s (s=6 for p=2), and number
of columns is equal to m (number of nodes in theD\far).

After generation of the MFD formulas, the matrixidkreturned to the main program.
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The appropriate terms in the i-th row of the globtrix A are filled with the terms of M.
These MFD formulas correspond to the second déresin the differential equation from
inside the domain (2)

0°F  0°F o
(DZF)(x,m):(GXZ Y j( ):Z(MMJ’M&J)Fja) (4)
% Yi

=1

In the same main loop, the subsequent term ofite hand side vector B is filled. In this
simple case, the right hand side function of tHéedintial equation (2) is constant and does

not depend on the coordinates of the collocatidntrox, v; ) -

For BC code = 1, boundary equation from (2) shduédfulfiled at boundary node (i).
Consequently, only the diagonal element in therpth of the matrix A is non-zero one and is
equal to 1 (afterk, =0).

Algorithm is completed by solution of the non-sitaguset of MFD equations.

Several remarks should be noted
- MFD equations are constructed node-by-node, in eask difference collocation
is applied in order to generate one equation,
- no numerical integration is required,
- no aggregation is required,
- no additional rebuilding of the final MFD equatiofe fulfilment of boundary
conditions is required.

Moreover, no boundary approximation was neededusecaf essential boundary conditions
only. However, this Matlab function may easily gexised for natural boundary conditions,

e.g. by coding BC="2" those nodes that are locatedhe boundaryQ, and by spanning

local approximation with at least the same orddt esassumed inside the domain. The MFD
formulas, required for boundary collocation, depem differential operator from the
boundary. Program code may be also generalisednipigiven non-constant right hand side

function f (x,y).

4. Matlab code for the variational formulation

Designing a code for analysis of variational folation is much more complex task
than in the case of the local formulation. Only Wweymmetric variational (Galerkin) b.v.
problem formulation (3) is considered here. Sudbal formulation is commonly applied in
other discrete methods, especially in the FE arsaly$erefore, an appropriate FE code may
be selected and rearranged in order to span Iggabaimation in the meshless manner -
without any imposed structure like element in tl&ViF Among several possible integration
techniques, background triangular mesh will be &tbphere, due to the simplicity in
generation Delaunay triangles in Matlab and thesowf the derivatives in the variational
principle (odd order requires integration betwdamnodes - one may expect better quality in
results then). This fact may cause some controv@neg it is a mesh-like structure. However,
though triangles are used for integration, locarapimation of the trial function®) should
be prescribed in terms of nodes only. Therefore nlethod remains meshless.
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The Matlab code for variational formulation use® omain functionvarMFDM and the same
subfunctions gar andmwils) that were described in detailed manner in theipus section.
Here, considered will be those parts of the mamction, which are significantly different
from thelocalMFDM function.

function header: F = varMFDM N, X, Y, BC, T, nt, G teta)
- Argunents list:
N - nunber of nodes
X (N x 1) - x-coordinates of nodes
Y (N x 1) - y-coordinates of nodes
BC (N x 1) - boundary codes of nodes (0 - internal node, 1 - boundary node)
T (nt x 3)- list of triangles
nt - nunber of triangles
G - shear nodul us
teta - torsional angle (load)
- Return values |ist:
F (N x 1) - nodal values of Prandtl function (primary NM-DM sol ution)

First of all, the argument list was broaden to udel list of Delaunay triangles (array T) and
their total number (scalar variable nt).

The default number of Gauss points nG in triangigsal to 3 was adopted. This nhumber of
Gauss points provides sufficient approximation order the integrands. Appropriate
integration weights are defined a-priori, whergasctfic locations of the Gauss points (arrays
Gpx and Gpy), transformed from triangular coordesafsee Fig.1) are computed separately
for subsequent triangles (integration elements)y éer configuration of integration points
and weights may be easily substituted to the cddeous options are gathered in Tab.1. Any
of those integration schemes should produce reasonesults, however it is recommended to
avoid Gauss points with negative weights (herees@hwith 4 integration points).

Number of Gauss

No. points X; y coordinates of Gauss points Weights w
1 1
1 1 SOt x)s S(vatyatyy) 1
1 1
E(Xl'*'xz); _Z(Y1+y2)
1 1 111
2 3 E(x2+x3); —2(y2+Y3) 3'3'3

1 1
E(X1+X3); E(Y1+ y3)

X+HX+X; Y, tY,tY,
0.6x, + 0.X%,+ 0.%, ;0.6/,+ 0.2,+ 0y, 27 25 25 25

3 4 —
0.2x, + 0.6, + 0.%, ;0.3/,+ 0.8,+ 0¥, 48 48 48 48
0.2x,+ 0., + 0.&, ;0.3,+ 0.2,+ 0%,
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1 1
5()(1+X2+X3); §(y1+ y,+ Y3)

ax +thx,+bx; ay,+by +by,

bx +ax,+bx; by +tay +by,

bx +bx,+ax; by +by +tay,

3, thX,tbx; ay tby +by,
b,x, +aX,+bx; by +tay tby,
bx, +bx,+ax; by, tby tay,
a, =0.059715871h = 0.47014206¢
a, =0.797426985%, = 0.10128650

0.225000000¢
0.132394152
0.132394152
0.132394152
0.125939180:
0.125939180:
0.125939180:

Tab. 1: Various configurations of Gauss points anéhtegration weights for triangle with vertices at mpints

(%0 Y1) (%20 ¥2) o(X5Y5)

The main loop (k) is performed over the integratsd@ments (trianglesT, ,k =1..n) and it
constitutes the equivalent structure to the FE ceden such loop would be run over the
elements. The nodes numbers of the k-th triangtetheir coordinates are received from the
topology array T. Afterwards, the locations of 3uSs points (points in the middle of triangle
sides) are computed. The next lines of code aretddwvto computation of the Jacobidp
(determinant of the transformation Jacobi matw)jch is equal to the area of triangle with
lengthsa,b,c of its sides . The well-known Heron's formula jppked here

atb+c
Je=p(p-a)(p-b)(p-0) , P="— (5)
where
(6)
Fig. 1: Integration triangle
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The most interesting part of this code starts fritr@ loop (p) over Gauss points in the
specified (k) triangle. The MFD star with additibmedes is generated at every Gauss point
using the same distance-based criterion and the $aatlab function gtar) as for the local
formulation. Moreover, the MFD star still constdst the one and only support for
approximation of the trial function. Here, the ardé approximation may be reduced to 1 due
to the requirements for the trial function in theriational principle (2). Thengws) function
produces the MF NI ') MFD formulas matrix for the trial functioR. The approximation
support for the test functiorv differs with the size of the MFD star. The MFDrstar the
test functionv is established for three nearest nodes whichomagdd in vertices of the k-th
triangle. This feature is identical for both the DM and FEM approaches. The test function

v has to be interpolated (matrix MvM ™) on the integration subdomain. Otherwise, it
provides additional non-zero residual error to fystem of MFD equations. It is worth
stressing that it does not disrupt the meshlessofetf®e approach as the integration triangle
does not have any influence on the approximati@pau of the trial functionF. It has to be
mentioned here, that the triangular integration mes only one of the several various
approaches for numerical integration in the meshhesthods. It was chosen here mainly due
to the fact of the simplicity of triangles geneoatiin Matlab (one built-in procedure for
Delaunay triangles). The other approaches, which lmeaassociated with the term "meshless”
in more direct manner, include the local-globalr@®etGalerkin approaches (proposed by
S.Atluri), in which the test function may be comdgtaver the specified subdomain, usually
prescribed to each node. Such domain has simplmejeocal shape (rectangle, circle) and
may determined totally independently from the clofidodes.

In case of global approach, the aggregation isiredult is performed in the same manner as
in the FEM, i.e. in the form of the summation ok tmatrix and vector terms in each
integration subdomain. The appropriate terms oh bgibbal matrix A and vector B are
aggregated in according to the formulas that refsoith the discrete form of the variational
principle (3)

I(GF ov OF av
+

oF ov ———ZGﬁv]dQ I[aFav oF ov
S\ 0X 0x 0y dy

——+——-2G6v |dxdy =
0x 0x 0dy dy

k=1 Te

(7)
t N m m 3 3
=2 32,4, (Z M3 F, mZ M2V + 2 MG R 2 MGV, —2GEY M &-“,)W“]
=1 i=1 i=1

k=1  p=1 j=1

Imposition of the homogeneous essential boundaryditons requires additional
modification of the global matrix and vector. If BG@de of subsequent i-th node is equal to 1,
the appropriate i-th row and i-th column of glob@trix A and i-th element of B are reset as
well as the diagonal i-th element of A is set tolhis is the same technique as commonly
applied in the FEM. It is organized here in thenfoiof several subsequent matrix
transformations which will run faster than one layer all nodes. It may be generalized for
non-homogeneous conditions as well. Algorithm isipteted by solution of the non-singular
set of the MFD equations.

Several remarks may be noted

Stawomir Milewski slawek@L5.pk.edu.pl 2012-01
Cracow University of Technology

Civil Engineering Department

Institute for Computational Civil Engineering



MFDM toolbox manual - Meshless Finite Differenceabysis in Matlab

- solution algorithm involves numerical integratigmerformed here between the
nodes over triangles (most effective option for caldler of the differential
operators), as in the FEM for triangular elements,

- MFD formulas are computed at Gauss points ratteer &t nodes,

- trial (unknown) functionF is approximated on the MFD star with greater numbe
of nodes than it is required for the assumed appraixon order,

- approximation order of the trial function may bdueed to 11§=1),

- test function is interpolated (with ordprl) on the integration subdomain only,
without any additional nodes,

- aggregation of both the global matrix and globattee is required and it is
performed in the same manner as in the FEM,

- imposition of the essential boundary conditionasdd on the reconstruction of the
global matrix and vector and it is performed in #agne manner as in the FEM.

Moreover, above given code may be simply extendedtlie imposition of the natural
boundary condition (e.g. edge loading). The looprdviangles edges is necessary in order to
introduce additional elements to the global ve&dor those nodes which are located on the
boundary subjected to natural conditions.

5. General postprocessing of the results

As the result of the solution of the MFD equatiomse obtains the nodal values of the
Prandtl functionF. Here, considered is calculation of the stresspmmants as well as total
shear stress (1). The postprocessing may be pextbanarbitrary point of the domain or its
boundary as well as on the chosen subdomain. Ifirdtease, only local value is sought and
it is computed directly by means of the MWLS appmoetion. In the second case, one need
to integrate over chosen subdomain (e.g. triangleotygon) or over the whole domain. The
MWLS approximation is sought then at every Gausmtpduch approach is commonly
applied in order to visualize the results in comrepytrograms. Integral values inside the
triangles may be also helpful in adaptive analySisme additional MWLS techniques, for
instance smoothing and filtering of the rough nuo@results, may be included as well.

function header: [StrN,StrT, Res] = postprocessingM?EDM N, X, Y, T, nt,F, G teta)
- Argunents list:
N - nunber of nodes
X (N x 1) - x-coordinates of nodes
Y (N x 1) - y-coordinates of nodes
T (nt x 3)- list of triangles
nt - nunber of triangles
F (N x 1) - nodal values of Prandtl function (primary NM-DM sol ution)
G - shear nodul us
teta - torsional angle (load)
- Return values |ist:
StrN (N x 3) - array of stresses at nodes: conponet tzx, conponent tzy and total
val ue tz
StrT (nt x 3) - array of stresses at triangles: conponet tzx, conponent tzy and
total value tz
Res (nt x 1) - vector of residual error

Large parts of already implemented codes may b&eappere with small changes only. The
list of postprocessing arguments may consist ofsdrae items as in the previous examples,
with additional items for the nodal values (ved®rof the primary solution (calculated nodal
values of the Prandtl function). Results of botbaloand variational approaches may be
substituted here. The number of nodes for the MiaBs should be greater (e.g. m=16) when
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compared with the number applied for the MFD forasufeneration. Calculation of nodal
stresses requires one loop. At each node, the M&Dasd MFD formulas are generated. For
the postprocessing, it is recommended to use mauksr weights, e.g. in the form proposed
by W.Karmowski

gt "
a4=(p2+p2+gzj (8)

where p is a distance between central star point andpé&ciBed node and) is a small

parameter, that defines the rank of the data snmapthwWheng # 0, smoothing is applied.
Wheng = 0, no smoothing occurs and the weights in foemi@) become singular (rough
interpolation is provided). So far, thewls function was applied for derivatives
approximation ang = 0 in order to impose the interpolation in thatcal point (e.g. node) of
the MFD star (the Kronecker delta property). Hassumed ig > O.

The MFD formulas are applied in order to obtainnibelal values of the partial derivatives of

the first ordera—F and a—F

0x ay

aFj i oF m
v =2 My Fo (_j = z M, Fo 9
( OX Jiy) it e oy (x.y) k2 k

which are necessary for computation of stressesAf¢rwards, the mean integral values
(forces) of stresses (9) as well as residual eifrtine local formulation (2)

2 2
= a—f + 6_!2 +2G (10)
ox= oy
are evaluated over each triangle T
r;:jrzxdxdy : r;:jrzydxdy ,rt =J'rdxdy (11)
T T T

As in the case of the standard variational approacly 3 Gauss points may be assumed. The
MFD stars and MFD formulas are generated at evenys& point in order to approximate the
integrals (11). For instance, given is the follogvidiscrete value of the global residual error
(10) evaluated for triangle T

=3y w,

(12)

(Z M, +Ms;, J F +2G6

6. Numerical results

Matlab implementation of the basic steps of the MFDolution approach was
considered. Examples may concern the following dspec
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- the impact of nodes irregularity on the final résul

- various domain shapes and construction of the bemynd

- various types of benchmark problems (shear analpfase stress analysis, plate
deformation etc),

- comparison of the results obtained for local antbavianal formulations,

- the effectiveness of the final results postprocegsi

Let us consider a rectangular domain with lengih gnd width ©) equal to 2.
Prismatic bar with such rectangular cross-sect®subjected to torsion. Appropriate b.v.
problem may be posed locally (2) at each pointglobally (3) by means of the variational
principle.

In the "TEST.m" file, defined are all parametergjuieed for the proper program
functioning. For sake of simplicity, assumed (ndrygical) are non-mechanical test values of

G=1 andé?zg. The variabletask may be assumed as "1" or "2". 1 is for the regiéar

domain, whereas 2 is for the railroad rail dom#ircase of the rectangular domaiask = 1),

the user has to define the dimensioasand b of the rectangle as well as the number of
nodes in thex andy directions (parameterax and ny). The variableformulation is
responsible for the b.v.p. formulation type: lo€4l") or global (variational weak - "2").

Below presented are the Matlab results for thelegguesh generation in the rectangle after
assuming N =3x3=9 nodes, with regular spacing, =h, =1, consequently numbered

from 1 to 9. Thus only one unknown function valugddle node 5) is sought = )?The
well-known Matlab functionmeshgrid is applied in order to generate regular mesh & th

rectangle, while the array of triangle§) (may be obtained by means of the other Matlab
function,delaunay.

Potential users are encouraged to run the "TESTilenfor nx = ny = 3. The proper values of
the domain discretization should be as follows

- X=[012012012],

- Y=[000111222],

- BC=[111101111],

- N=09.

The properly implemented code for local formulatsirould provide valud=;, = 0.3141593
whereas the variational one should yield, =  0.4405I8e results for the denser mesh

(with N =20x20=400 nodes) are as follows. The maximum valueFofis equal to
F.ax = 0.30715 for the local formulation, whereas it is equal kg, =0.30832 for the
variational one.

Additionally, in the "TEST.m" file implemented wes®sme simple visualization procedures.
As the result of the program run, one figure appedivided into the four independent graphs.
In each graph, various quantity is shown: the Rtdadction ), the stress components,,

and 7, as well as the total shear stregs The only Matlab function, which was used here,

is the patch function which draws the filled polygon defined liyree vectors of space
coordinates as well as one colour parameter.
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Fig.2 presents the final results of the MFDM aniglyd the local formulation (2) for denser
irregular cloud withN = 20x 20= 400 nodes for rectangular bar wigh=b = 1 cross-section
dimensions. Shown are: the Prandtl functierdistribution (top left), shear stress, (top

right), shear stress,, (bottom left) as well as the total shear stress(bottom right).

Fig.3 presents the results of the variational aig)yor the 2-T shaped domain. The irregular
cloud with 462 nodes (for trial function approxinoaf) and 766 triangles (for integration and
visualization) was applied. Domain description, g@ation of nodes as well as construction of
triangles are possible using only Matlab functiombe "TEST.m" does not contain the
appropriate geometry and discretization data feahsype of domain. Therefore, the users are
encouraged to prepare and deliver such data ondivei.

Finally, MFDM results obtained for the railroadlrdly means of the variational principle, are
presented in Fig.4. They may be treated as pdheofesidual stresses analysis, emerged from
the technological process and wear. Users are eaged to perform such evaluation on their
own using data prepared by the author and deliverede text file "railroadrailDATA.txt".

At first, the total number of nodes (N) is giverhéh nodes are described by their coordinates
(X,Y) as well as the boundary code BC (0,1). Aftards, the number of triangles (nt) is
given, followed by list of all triangles (T), in weh their vertices are prescribed by nodes
numbers. It should be not complicated for usergetad these data and substitute them
(N,X,Y,nt,T) to any of two previously given functis (ocalMFDM and varMFDM).
However, in the "TEST.m" file prepared is the seappropriate procedures (file functions:
fopen, fscanf and fclose), which is run after the following substitutiotask = 2 in the
beginning of the program code.

MFDM MFDM
LOCAL FORMULATION LOCAL FORMULATION
SOLUTION: PRANDTL FUNCTION SOLUTION: SHEAR STRESS COMPONENT  «

max = 0.30715 max = 0.62414

MFDM MFDM

LOCAL FORMULATION LOCAL FORMULATION
SOLUTION: SHEAR STRESS COMPONENT < SOLUTION: TOTAL SHEAR STRESS T,
7
max = 0.62414 i’ max =0.62415

06+

0.4~
0.2+ i

Fig.2 Rectangular domain: MFDM results for locatnfmlation: the Prandtl function and
stress components
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MFDM MFDM
VARIATIONAL FORMULATION VARIATIONAL FORMULATION
SOLUTION: PRANDTL FUNCTION SOLUTION: SHEAR STRESS COMPONENT T
max = 0.7893 max = 1.1077

MFDM MFDM
VARIATIONAL FORMULATION VARIATIONAL FORMULATION
SOLUTION: SHEAR STRESS COMPONENT < SOLUTION: TOTAL SHEAR STRESS
y z
max = 1.0623 max = 1.2207

Fig.3 2-T shaped domain: MFDM results for variaéibformulation: the Prandtl function and
stress components

MFDM MFDM
SOLUTION: PRANDTL FUNCTION : T

max = 0.26956 max = 0.60809

MFDM MFDM
VARIATIONAL FORMULATION VARIATIONAL FORMULATION
SOLUTION: SHEAR STRESS COMPONENT < SOLUTION: TOTAL SHEAR STRESS <
zv z

max = 0.44362 max = 0.61487

Fig.4 Railroad rail domain: MFDM results for var@tal formulation: the Prandtl function
and stress components
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7. Comparison with the Finite Element Method algorithm

It is worth to compare already obtained resultshef MFDM solution approach with the
results obtained by means of the standard FingenEht approximation technique. Let us pay
attention on the variational Galerkin type formidat(3), fundamental formulation for the
element based discrete approach in most cases.pitétioning of the domain into the set of
the non-overlapping elements (triangles, rectangiéss required to fulfil the variational
principle (3) on the finite elements separatelyisTintegral approach may lead to several
local matrix and vector quantities (stiffness matrmass matrix, load vector etc.) .
Afterwards, one needs to aggregate the local giesin order to produce the global set of
algebraic equations. Therefore, the most importaatures which distinguish standard
meshless and standard element based approachebertisted as follows:

- element structure is required a-priori, as the mpart of the domain
discretization,

- both test and trial functions are interpolated lBans of the same basis (shape)
functions,

- the approximation of the unknown function is préssdl on the element
(between the nodes), without any additional nodedegrees of freedom (no
least squares technique is required)

- the interpolation schemes (usually of Lagrange 'errhite type) are defined in
the explicit manner, and do not require evaluatbmterpolation values point
by point.

Moreover, the MFDM solution approach may be treassdthe more general discrete
approach, since it allows using of the arbitraryrmbary value problem formulation (local,
global, mixed), whereas the FEM uses the variatitomenulations only.

In the present paper, two examples of implementates were discussed and tested. The
second example concerns the variational formula8)nand the meshless type of solution
approach. It uses the triangular background mestorder to perform the numerical
integration (between the nodes). This type of iraegn is applied in the FEM analysis as
well. Therefore, the program code for variatiomainfulation using the meshless FMD and
integration between the nodes (using the triangeedls), presented in the previous sections,
may be transferred into the finite element codeheut any difficulties. Here, the only
parameter, which has to be modified, is the sizéhefMFD star (the variable 'm' defined in
the beginning of thearMFDM function). It has to be equal to 3. What shall rapgphen?
The number of nodes in the MFD star defined at Gaomts inside the triangles (three nodes
located closest to the Gauss point are the trianvgitices) would guarantee function
interpolation there (triangular finite elements twthe linear interpolation, based on three
nodal function values). No additional nodes frontsale the triangle will be used, therefore
the weight matrixW for the moving least squares approximation woll have any influence
on the final results (no additional free degreesaaailable within the assumed approximation
order). The MFD coefficient matri®, consisting of the MFD formulas for subsequent
derivatives up to the assumeeth, would present the values of the element shapstions at
considered the Gauss point. It has to be strebsgsnt such case, the matrices in function
varMFDM code, namely MF and Mv, would be the same (duthéosame approximation
order 1 and the same number of nodes in the MR sta
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The subsequent steps of the algorithm remain thmesas for the MFDM analysis

(aggregation, fulfilment of the essential boundeoyditions, solution of the set of algebraic
equations). However, the postprocessing of the Ingalation is expected to produce rather
different results in both cases. Despite the lopraxmation orderf = 1) applied in case of

the MFDM analysis, the stress fields will be contns (it is presented in Fig.2, Fig.3 and
Fig.4), due to the continuous global approximatjonly the local approximation of the 1st
order remains discontinuous). This feature will maicur in case of the FEM analysis
conducted using software devoted to the FEM onllie Btress fields should remain

discontinuous due to theC® linear interpolation of the unknown function, wseany
additional smoothing is applied. That is not theechere. Software delivered here reproduces
the continuous derivatives fields using the MWL$ragimation in each case.

It is important to mention that only this type ofFlM analysis may be reduced to the FEM
analysis by means of the small code modificatioly.ofhe other criteria of nodes selections
for the MFD star or the other integration techngueay lead to the different results,
especially for the coarse meshes and may not ltpueagdent element based approach.

Below presented are results of the FEM analysighefprismatic bar with the rectangular
cross-sectiom=b =2 (task 1)
- for N =3x3=9 nodes,F,, =0.34907,

- for N =20x 20= 40( nodes,F,_, = 0.30475.

No additional figures (for the FEM results) are whohere due to the fact that for every
domain type and for the fine mesh with 400 nodediyidual graphs (e.g. Prandlt functidn
distribution for local MFDM, variational MFDM andBM) are very closed to each other.
Therefore, some deeper and comprehensive discussiwerning efficiency of the meshless
and element based approaches as well as reasapbkgeriori error estimation should be
added. This should be the topic of the separaterpapd the associated software and its
instruction.

However, it is worth to compare those results vitie ones obtained for the variational
principle (3) using the MFDM solution approach. Mover, further MFDM and FEM
calculations may be performed using delivered saféwe.g. for different domain geometry
and various number of nodes.
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