SUBROUTINE SSYMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,
     $                   BETA, C, LDC )
****************************************************************************
*                                                                          *
*   DATA PARALLEL BLAS based on MPL                                        *
*                                                                          *
*   Version 1.0   1/9-92 ,                                                 *
*   For MasPar MP-1 computers                                              *
*                                                                          *
*   para//ab, University of Bergen, NORWAY                                 *
*                                                                          *
*   These programs must be called using F90 style array syntax.            *
*   Note that the F77 style calling sequence has been retained             *
*   in this version for compatibility reasons, be aware that               *
*   parameters related to the array dimensions and shape therefore may     *
*   be redundant and without any influence.                                *
*   The calling sequence may be changed in a future version.               *
*   Please report any BUGs, ideas for improvement or other                 *
*   comments to                                                            *
*                    adm@parallab.uib.no                                   *
*                                                                          *
*   Future versions may then reflect your suggestions.                     *
*   The most current version of this software is available                 *
*   from netlib@nac.no , send the message `send index from maspar'         *
*                                                                          *
*   REVISIONS:                                                             *
*                                                                          *
****************************************************************************
      implicit none
*     .. Scalar Arguments ..
      CHARACTER*1        SIDE, UPLO
      INTEGER            M, N, LDA, LDB, LDC
      REAL               ALPHA, BETA
*     .. Array Arguments ..
      real, array(:,:) :: a,b,c           
      intent(in)    :: a, b
      intent(inout) :: c
*     ..
*
*  Purpose
*  =======
*
*  SSYMM  performs one of the matrix-matrix operations
*
*     C := alpha*A*B + beta*C,
*
*  or
*
*     C := alpha*B*A + beta*C,
*
*  where alpha and beta are scalars,  A is a symmetric matrix and  B and
*  C are  m by n matrices.
*
*  Parameters
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry,  SIDE  specifies whether  the  symmetric matrix  A
*           appears on the  left or right  in the  operation as follows:
*
*              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
*
*              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of  the  symmetric  matrix   A  is  to  be
*           referenced as follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of the
*                                  symmetric matrix is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of the
*                                  symmetric matrix is to be referenced.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry,  M  specifies the number of rows of the matrix  C.
*           M  must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix C.
*           N  must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
*           m  when  SIDE = 'L' or 'l'  and is  n otherwise.
*           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
*           the array  A  must contain the  symmetric matrix,  such that
*           when  UPLO = 'U' or 'u', the leading m by m upper triangular
*           part of the array  A  must contain the upper triangular part
*           of the  symmetric matrix and the  strictly  lower triangular
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
*           the leading  m by m  lower triangular part  of the  array  A
*           must  contain  the  lower triangular part  of the  symmetric
*           matrix and the  strictly upper triangular part of  A  is not
*           referenced.
*           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
*           the array  A  must contain the  symmetric matrix,  such that
*           when  UPLO = 'U' or 'u', the leading n by n upper triangular
*           part of the array  A  must contain the upper triangular part
*           of the  symmetric matrix and the  strictly  lower triangular
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
*           the leading  n by n  lower triangular part  of the  array  A
*           must  contain  the  lower triangular part  of the  symmetric
*           matrix and the  strictly upper triangular part of  A  is not
*           referenced.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*           least  max( 1, n ).
*           Unchanged on exit.
*
*  B      - REAL             array of DIMENSION ( LDB, n ).
*           Before entry, the leading  m by n part of the array  B  must
*           contain the matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*           supplied as zero then C need not be set on input.
*           Unchanged on exit.
*
*  C      - REAL             array of DIMENSION ( LDC, n ).
*           Before entry, the leading  m by n  part of the array  C must
*           contain the matrix  C,  except when  beta  is zero, in which
*           case C need not be set on entry.
*           On exit, the array  C  is overwritten by the  m by n updated
*           matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. Local Arrays ..
      real, array(lda,lda) :: aloc
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
      INTRINSIC          matmul
      INTRINSIC          merge 
      INTRINSIC          transpose
*     .. Local Scalars ..
      LOGICAL            LSIDE, UPPER
      INTEGER            I, INFO, J, K, NROWA
      REAL               TEMP1, TEMP2
*     .. Parameters ..
      REAL               ONE         , ZERO
      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Executable Statements ..
*
*     Set NROWA as the number of rows of A.
*
      LSIDE  = LSAME( SIDE  , 'L' )
      IF( LSIDE )THEN
         NROWA = M
      ELSE
         NROWA = N
      END IF
      UPPER = LSAME( UPLO, 'U' )
*
*     Test the input parameters.
*
      INFO = 0
      IF(      ( .NOT.LSIDE                ).AND.
     $         ( .NOT.LSAME( SIDE, 'R' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.UPPER              ).AND.
     $         ( .NOT.LSAME( UPLO, 'L' ) )      )THEN
         INFO = 2
      ELSE IF( M  .LT.0               )THEN
         INFO = 3
      ELSE IF( N  .LT.0               )THEN
         INFO = 4
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 7
      ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
         INFO = 9
      ELSE IF( LDC.LT.MAX( 1, M     ) )THEN
         INFO = 12
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'SSYMM ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
     $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
      c(1:m,1:n) = c(1:m,1:n) * beta
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO ) RETURN
*
*     Start the operations.
*
      IF( LSIDE )THEN
*
*        Form  C := alpha*A*B + beta*C.
*
clater	forall (i = 1:m, j = 1:m) aloc(i,j) = j-i
        do i = 1 , m
                do j = 1 , m    
                aloc(i,j) = j-i
                enddo
        enddo
*
      if (upper) then
        aloc(1:m,1:m) = merge( a(1:m,1:m), transpose(a(1:m,1:m)),
     $                  aloc(1:m,1:m) .ge. zero )
      else
        aloc(1:m,1:m) = merge( a(1:m,1:m), transpose(a(1:m,1:m)),
     $                  aloc(1:m,1:m) .le. zero )
      endif
*
        c(1:m,1:n) = c(1:m,1:n) + 
     $               alpha * matmul(aloc(1:m,1:m),b(1:m,1:n))
      ELSE
*
*        Form  C := alpha*B*A + beta*C.
*
clater	forall (i = 1:n, j = 1:n) aloc(i,j) = j-i
        do i = 1 , n
                do j = 1 , n    
                aloc(i,j) = j-i
                enddo
        enddo
*
      if (upper) then
        aloc(1:n,1:n) = merge( a(1:n,1:n), transpose(a(1:n,1:n)),
     $                  aloc(1:n,1:n) .ge. zero )
      else
        aloc(1:n,1:n) = merge( a(1:n,1:n), transpose(a(1:n,1:n)),
     $                  aloc(1:n,1:n) .le. zero )
      endif
*
        c(1:m,1:n) = c(1:m,1:n) + 
     $               alpha * matmul(b(1:m,1:n),aloc(1:n,1:n))
      ENDIF
*
      RETURN
*
*     End of SSYMM .
*
      END