SUBROUTINE SSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
* .. Scalar Arguments ..
REAL ALPHA
INTEGER INCX,INCY,LDA,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
REAL A(LDA,*),X(*),Y(*)
* ..
*
* Purpose
* =======
*
* SSYR2 performs the symmetric rank 2 operation
*
* A := alpha*x*y**T + alpha*y*x**T + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an n
* by n symmetric matrix.
*
* Arguments
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the upper or lower
* triangular part of the array A is to be referenced as
* follows:
*
* UPLO = 'U' or 'u' Only the upper triangular part of A
* is to be referenced.
*
* UPLO = 'L' or 'l' Only the lower triangular part of A
* is to be referenced.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* ALPHA - REAL .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* X - REAL array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the n
* element vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* Y - REAL array of dimension at least
* ( 1 + ( n - 1 )*abs( INCY ) ).
* Before entry, the incremented array Y must contain the n
* element vector y.
* Unchanged on exit.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* A - REAL array of DIMENSION ( LDA, n ).
* Before entry with UPLO = 'U' or 'u', the leading n by n
* upper triangular part of the array A must contain the upper
* triangular part of the symmetric matrix and the strictly
* lower triangular part of A is not referenced. On exit, the
* upper triangular part of the array A is overwritten by the
* upper triangular part of the updated matrix.
* Before entry with UPLO = 'L' or 'l', the leading n by n
* lower triangular part of the array A must contain the lower
* triangular part of the symmetric matrix and the strictly
* upper triangular part of A is not referenced. On exit, the
* lower triangular part of the array A is overwritten by the
* lower triangular part of the updated matrix.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* max( 1, n ).
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER (ZERO=0.0E+0)
* ..
* .. Local Scalars ..
REAL TEMP1,TEMP2
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (INCY.EQ.0) THEN
INFO = 7
ELSE IF (LDA.LT.MAX(1,N)) THEN
INFO = 9
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('SSYR2 ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
*
* Set up the start points in X and Y if the increments are not both
* unity.
*
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (N-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (N-1)*INCY
END IF
JX = KX
JY = KY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the triangular part
* of A.
*
IF (LSAME(UPLO,'U')) THEN
*
* Form A when A is stored in the upper triangle.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 20 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(J)
TEMP2 = ALPHA*X(J)
DO 10 I = 1,J
A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
10 CONTINUE
END IF
20 CONTINUE
ELSE
DO 40 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(JY)
TEMP2 = ALPHA*X(JX)
IX = KX
IY = KY
DO 30 I = 1,J
A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
IX = IX + INCX
IY = IY + INCY
30 CONTINUE
END IF
JX = JX + INCX
JY = JY + INCY
40 CONTINUE
END IF
ELSE
*
* Form A when A is stored in the lower triangle.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 60 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(J)
TEMP2 = ALPHA*X(J)
DO 50 I = J,N
A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
50 CONTINUE
END IF
60 CONTINUE
ELSE
DO 80 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(JY)
TEMP2 = ALPHA*X(JX)
IX = JX
IY = JY
DO 70 I = J,N
A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
IX = IX + INCX
IY = IY + INCY
70 CONTINUE
END IF
JX = JX + INCX
JY = JY + INCY
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of SSYR2 .
*
END