* ************************************************************************ * SUBROUTINE ECTPSV( UPLO, TRANS, DIAG, N, AP, X, INCX ) * .. Scalar Arguments .. INTEGER INCX, N CHARACTER*1 DIAG, TRANS, UPLO * .. Array Arguments .. COMPLEX*16 X( * ) COMPLEX AP( * ) * .. * * Purpose * ======= * * ECTPSV solves one of the systems of equations * * A*x = b, or A'*x = b, or conjg( A' )*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix. Additional precision * arithmetic is used in the computation. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A'*x = b. * * TRANS = 'C' or 'c' conjg( A' )*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * AP - COMPLEX array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) * respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) * respectively, and so on. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced, but are assumed to be unity. * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. At least double precision * arithemtic is used in the computation of x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 20-July-1986. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) * .. Local Scalars .. INTEGER I, INFO, IX, J, JX, K, KK, KX LOGICAL NOCONJ, NOUNIT * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC CONJG * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( UPLO, 'U' ).AND. \$ .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = 1 ELSE IF ( .NOT.LSAME( TRANS, 'N' ).AND. \$ .NOT.LSAME( TRANS, 'T' ).AND. \$ .NOT.LSAME( TRANS, 'C' ) ) THEN INFO = 2 ELSE IF ( .NOT.LSAME( DIAG, 'U' ).AND. \$ .NOT.LSAME( DIAG, 'N' ) ) THEN INFO = 3 ELSE IF ( N.LT.0 ) THEN INFO = 4 ELSE IF ( INCX.EQ.0 ) THEN INFO = 7 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'ECTPSV', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) \$ RETURN * NOCONJ = LSAME( TRANS, 'T' ) NOUNIT = ( DIAG .EQ.'N' ).OR.( DIAG .EQ.'n' ) * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF( INCX.LE.0 )THEN KX = 1 - ( N - 1 )*INCX ELSE IF( INCX.NE.1 )THEN KX = 1 END IF * * Start the operations. In this version the elements of AP are * accessed sequentially with one pass through AP. * IF( LSAME( TRANS, 'N' ) )THEN * * Form x := inv( A )*x. * IF( LSAME( UPLO, 'U' ) )THEN K = ( N*( N + 1 ) )/2 IF( INCX.EQ.1 )THEN DO 20, J = N, 1, -1 IF( X( J ).NE.ZERO )THEN IF( NOUNIT ) \$ X( J ) = X( J )/AP( K ) K = K - 1 DO 10, I = J - 1, 1, -1 X( I ) = X( I ) - X( J )*AP( K ) K = K - 1 10 CONTINUE ELSE K = K - J END IF 20 CONTINUE ELSE JX = KX + ( N - 1 )*INCX DO 40, J = N, 1, -1 IF( X( JX ).NE.ZERO )THEN IF( NOUNIT ) \$ X( JX ) = X( JX )/AP( K ) IX = JX KK = K - 1 DO 30, K = KK, KK - J + 2, -1 IX = IX - INCX X( IX ) = X( IX ) - X( JX )*AP( K ) 30 CONTINUE ELSE K = K - J END IF JX = JX - INCX 40 CONTINUE END IF ELSE K = 1 IF( INCX.EQ.1 )THEN DO 60, J = 1, N IF( X( J ).NE.ZERO )THEN IF( NOUNIT ) \$ X( J ) = X( J )/AP( K ) K = K + 1 DO 50, I = J + 1, N X( I ) = X( I ) - X( J )*AP( K ) K = K + 1 50 CONTINUE ELSE K = K + N - J + 1 END IF 60 CONTINUE ELSE JX = KX DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN IF( NOUNIT ) \$ X( JX ) = X( JX )/AP( K ) IX = JX KK = K + 1 DO 70, K = KK, KK + N - ( J + 1 ) IX = IX + INCX X( IX ) = X( IX ) - X( JX )*AP( K ) 70 CONTINUE ELSE K = K + N - J + 1 END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A' )*x or x := inv( conjg( A' ) )*x. * IF( LSAME( UPLO, 'U' ) )THEN K = 1 IF( INCX.EQ.1 )THEN DO 110, J = 1, N IF( NOCONJ )THEN DO 90, I = 1, J - 1 X( J ) = X( J ) - AP( K )*X( I ) K = K + 1 90 CONTINUE IF( NOUNIT ) \$ X( J ) = X( J )/AP( K ) ELSE DO 100, I = 1, J - 1 X( J ) = X( J ) - CONJG( AP( K ) )*X( I ) K = K + 1 100 CONTINUE IF( NOUNIT ) \$ X( J ) = X( J )/CONJG( AP( K ) ) END IF K = K + 1 110 CONTINUE ELSE JX = KX DO 140, J = 1, N IX = KX KK = K IF( NOCONJ )THEN DO 120, K = KK, KK + J - 2 X( JX ) = X( JX ) - AP( K )*X( IX ) IX = IX + INCX 120 CONTINUE IF( NOUNIT ) \$ X( JX ) = X( JX )/AP( K ) ELSE DO 130, K = KK, KK + J - 2 X( JX ) = X( JX ) - CONJG( AP( K ) )*X( IX ) IX = IX + INCX 130 CONTINUE IF( NOUNIT ) \$ X( JX ) = X( JX )/CONJG( AP( K ) ) END IF K = K + 1 JX = JX + INCX 140 CONTINUE END IF ELSE K = ( N*( N + 1 ) )/2 IF( INCX.EQ.1 )THEN DO 170, J = N, 1, -1 IF( NOCONJ )THEN DO 150, I = N, J + 1, -1 X( J ) = X( J ) - AP( K )*X( I ) K = K - 1 150 CONTINUE IF( NOUNIT ) \$ X( J ) = X( J )/AP( K ) ELSE DO 160, I = N, J + 1, -1 X( J ) = X( J ) - CONJG( AP( K ) )*X( I ) K = K - 1 160 CONTINUE IF( NOUNIT ) \$ X( J ) = X( J )/CONJG( AP( K ) ) END IF K = K - 1 170 CONTINUE ELSE KX = KX + ( N - 1 )*INCX JX = KX DO 200, J = N, 1, -1 IX = KX KK = K IF( NOCONJ )THEN DO 180, K = KK, KK - ( N - ( J + 1 ) ), -1 X( JX ) = X( JX ) - AP( K )*X( IX ) IX = IX - INCX 180 CONTINUE IF( NOUNIT ) \$ X( JX ) = X( JX )/AP( K ) ELSE DO 190, K = KK, KK - ( N - ( J + 1 ) ), -1 X( JX ) = X( JX ) - CONJG( AP( K ) )*X( IX ) IX = IX - INCX 190 CONTINUE IF( NOUNIT ) \$ X( JX ) = X( JX )/CONJG( AP( K ) ) END IF K = K - 1 JX = JX - INCX 200 CONTINUE END IF END IF END IF * RETURN * * End of ECTPSV. * END