SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
* .. Scalar Arguments ..
REAL ALPHA
INTEGER INCX,LDA,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),X(*)
* ..
*
* Purpose
* =======
*
* CHER performs the hermitian rank 1 operation
*
* A := alpha*x*x**H + A,
*
* where alpha is a real scalar, x is an n element vector and A is an
* n by n hermitian matrix.
*
* Arguments
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the upper or lower
* triangular part of the array A is to be referenced as
* follows:
*
* UPLO = 'U' or 'u' Only the upper triangular part of A
* is to be referenced.
*
* UPLO = 'L' or 'l' Only the lower triangular part of A
* is to be referenced.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* ALPHA - REAL .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* X - COMPLEX array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the n
* element vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* A - COMPLEX array of DIMENSION ( LDA, n ).
* Before entry with UPLO = 'U' or 'u', the leading n by n
* upper triangular part of the array A must contain the upper
* triangular part of the hermitian matrix and the strictly
* lower triangular part of A is not referenced. On exit, the
* upper triangular part of the array A is overwritten by the
* upper triangular part of the updated matrix.
* Before entry with UPLO = 'L' or 'l', the leading n by n
* lower triangular part of the array A must contain the lower
* triangular part of the hermitian matrix and the strictly
* upper triangular part of A is not referenced. On exit, the
* lower triangular part of the array A is overwritten by the
* lower triangular part of the updated matrix.
* Note that the imaginary parts of the diagonal elements need
* not be set, they are assumed to be zero, and on exit they
* are set to zero.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* max( 1, n ).
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP
INTEGER I,INFO,IX,J,JX,KX
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX,REAL
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (LDA.LT.MAX(1,N)) THEN
INFO = 7
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHER ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
*
* Set the start point in X if the increment is not unity.
*
IF (INCX.LE.0) THEN
KX = 1 - (N-1)*INCX
ELSE IF (INCX.NE.1) THEN
KX = 1
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the triangular part
* of A.
*
IF (LSAME(UPLO,'U')) THEN
*
* Form A when A is stored in upper triangle.
*
IF (INCX.EQ.1) THEN
DO 20 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(J))
DO 10 I = 1,J - 1
A(I,J) = A(I,J) + X(I)*TEMP
10 CONTINUE
A(J,J) = REAL(A(J,J)) + REAL(X(J)*TEMP)
ELSE
A(J,J) = REAL(A(J,J))
END IF
20 CONTINUE
ELSE
JX = KX
DO 40 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(JX))
IX = KX
DO 30 I = 1,J - 1
A(I,J) = A(I,J) + X(IX)*TEMP
IX = IX + INCX
30 CONTINUE
A(J,J) = REAL(A(J,J)) + REAL(X(JX)*TEMP)
ELSE
A(J,J) = REAL(A(J,J))
END IF
JX = JX + INCX
40 CONTINUE
END IF
ELSE
*
* Form A when A is stored in lower triangle.
*
IF (INCX.EQ.1) THEN
DO 60 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(J))
A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(J))
DO 50 I = J + 1,N
A(I,J) = A(I,J) + X(I)*TEMP
50 CONTINUE
ELSE
A(J,J) = REAL(A(J,J))
END IF
60 CONTINUE
ELSE
JX = KX
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(JX))
A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(JX))
IX = JX
DO 70 I = J + 1,N
IX = IX + INCX
A(I,J) = A(I,J) + X(IX)*TEMP
70 CONTINUE
ELSE
A(J,J) = REAL(A(J,J))
END IF
JX = JX + INCX
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHER .
*
END