
Sparse Matrix Libraries in C++ for High Performance

Architectures�

Jack Dongarra
xz
, Andrew Lumsdaine

�
, Xinhui Niu

�

Roldan Pozo
z
, Karin Remington

x

xOak Ridge National Laboratory zUniversity of Tennessee �University of Notre Dame

Mathematical Sciences Section Dept. of Computer Science Dept. of Computer Science & Engineering

Abstract

We describe an object oriented sparse matrix library

in C++ designed for portability and performance

across a wide class of machine architectures. Besides

simplifying the subroutine interface, the object ori-

ented design allows the same driving code to be used

for various sparse matrix formats, thus addressing

many of the di�culties encountered with the typi-

cal approach to sparse matrix libraries. We also

discuss the the design of a C++ library for imple-

menting various iterative methods for solving linear

systems of equations. Performance results indicate

that the C++ codes are competitive with optimized

Fortran.

1 Introduction

Sparse matrices are pervasive in scienti�c and en-

gineering application codes. They often arise from

�nite di�erence, �nite element, or �nite volume dis-

cretizations of PDEs (e.g., in computational
uid

dynamics) or from discrete, network-type problems

(e.g., in circuit simulation). Over the past two

decades, a number of research e�orts have resulted

in sparse matrix software. Our goal is to com-

plement these e�orts by developing a comprehen-

sive sparse matrix package in C++. Several fac-

tors contribute to the di�culty of designing such a

comprehensive library. Di�erent computer architec-

tures, as well as di�erent applications, call for dif-

�This project was supported in part by the Defense Ad-

vanced Research Projects Agency under contract DAAL03-

91-C-0047, administered by the Army Research O�ce, the

Applied Mathematical Sciences subprogram of the O�ce

of Energy Research, U.S. Department of Energy, under

Contract DE-AC05-84OR21400, and by the National Sci-

ence Foundation Science and Technology Center Coopera-

tive Agreement No. CCR-8809615, and NSF grant No. CCR-

9209815.

ferent sparse matrix data formats in order to best

exploit registers, data locality, pipelining, and par-

allel processing. Furthermore, code involving sparse

matrices tends to be complicated and less portable

because assumptions of the underlying data for-

mats are invariably entangled within the application

code.

To address these di�culties, it is essential to

develop codes which are \data format free", thus

providing the greatest
exibility for using given

algorithms (library routines) in various architec-

ture/application combinations. In fact, the selec-

tion of an appropriate data structure can typically

be deferred until link or run time. We describe

SparseLib++, an object oriented C++ library for

sparse matrix computations which provides a uni-

�ed interface for sparse matrix computations across

a variety of sparse data formats. We also describe

IML++, an Iterative Methods Library in C++ for

the iterative solution of linear systems of equations.

The design of these libraries is based on the fol-

lowing principles:

Clarity: Implementations of numerical algorithms

should resemble the mathematical algorithms

on which they are based. This is in contrast

to Fortran, which can require complicated sub-

routine calls, often with parameter lists that

stretch over several lines.

Reuse: A particular algorithm should only need to

be coded once, with identical code used for all

matrix representations.

Portability: Implementations of numerical algo-

rithms should be directly portable across ma-

chine platforms.

High Performance: The object oriented library

code should perform as well as optimized data-

format-speci�c code written in C or Fortran.

The sparse matrix classes are all derived from an

abstract matrix base class so that same driving al-

gorithms can be used for various dense and sparse

linear algebra computations across sequential and

parallel architectures.

2 Sparse Matrix types

We have concentrated on the most commonly used

data structures which occur in a large portion of

application codes. The library can be arbitrarily

extended to user-speci�c structures and will even-

tually grow. Matrix formats supported in the initial

design of the library include:

Sparse Vector: List of nonzero elements with

their index locations. It assumes no particu-

lar ordering of elements.

Coordinate Storage (COOR): List of nonzero

elements with their respective row and column

indices. This is the most general sparse matrix

format, but it is not very space or computation-

ally e�cient. It assumes no ordering of nonzero

matrix values.

Compressed Row Storage (CRS):

Subsequent nonzeros of the matrix rows are

stored in contiguous memory locations and ad-

ditional integer arrays specify the column index

of each nonzero and beginning o�set of each

row. It assumes no ordering among nonzero

values within each row, but rows are stored in

consecutive order.

Compressed Column Storage (CCS): Also

commonly referred to as the Harwell-Boeing

sparse matrix format [3]. Similar to CRS, ex-

cept columns, rather than rows, are stored con-

tiguously. Note that the CCS ordering of A is

the same as the CRS of AT .

Compressed Diagonal Storage (CDS):

Designed primarily for matrices with rela-

tively constant bandwidth, the sub- and super-

diagonals are stored contiguously.

Jagged Diagonal Storage (JDS): . Also known

as ITPACK storage. More space e�cient than

CDS at the cost of a gather/scatter operation.

Block Compressed Row Storage (BCRS):

Useful when the sparse matrix is comprised of

square dense blocks of nonzeros in some regu-

lar pattern. The savings in storage and reduced

indirect addressing over CRS can be signi�cant

for matrices with large block sizes.

Skyline Storage (SKS): Also for variable band

or pro�le matrices. Mainly used in direct

solvers, but can also be used for handling the

diagonal blocks in block matrix factorizations.

In addition, symmetric and Hermitian versions of

most of these sparse formats will be supported. In

such cases only an upper (or lower) triangular por-

tion of the matrix is stored. The trade-o� is slightly

more complicated kernel operations with a some-

what di�erent pattern of data access. Details of

each data storage format are given in [1] and [5].

2.1 Sparse Matrix Operations

Our library contains the common computational

kernels required for solving linear systems with

many direct and iterative methods. The inter-

nal data structures of these kernels are compati-

ble with the proposed Level 3 Sparse BLAS, thus

providing the user with a large software base of

Fortran module and application libraries. Just

as the dense Level 3 BLAS [2] have allowed for

higher performance kernels on hierarchical mem-

ory architectures, the Sparse BLAS allow vendors

to provide optimized routines taking advantage of

indirect addressing hardware, registers, pipelining,

caches, memory management, and parallelism on

their particular architecture. Standardizing the

Sparse BLAS will not only provide e�cient codes,

but will also ensure portable computational kernels

with a common interface.

There are two types of C++ interfaces to ba-

sic kernels. The �rst uses simple binary opera-

tors for multiplication and addition, and the second

uses functional interfaces which can group triad and

more complex operations (e.g. Blas Mat Mult()) .

The binary operators provide a simpler interface,

(e.g. y = A � x denotes a sparse matrix-vector mul-

tiply) but may produce less e�cient code (since the

destination is not known at the * operator phase).

On distributed memory architectures, the alignment

of the temporary result of A*x with y could cause

extra data movement.

The computational kernels include:

� sparse matrix products,

C � op(A) B + �C

� solution of triangular systems,

C �D op(A)�1 B + �C

� reordering of a sparse matrix (permutations),

A A op(P)

� conversion of one data format to another,

A0 A

Initial r(0) = b�Ax(0)

for i = 1; 2; : : :

solveMz(i�1) = r(i�1)

�i�1 = r(i�1)
T

z(i�1)

if i = 1

p(1) = z(0)

else

�i�1 = �i�1=�i�2
p(i) = z(i�1) + �i�1p

(i�1)

endif

q(i) = Ap(i)

�i = �i�1=p
(i)T q(i)

x(i) = x(i�1) + �ip
(i)

r(i) = r(i�1) � �iq
(i)

check convergence;

end

r = b - A*x;

for (int i = 1; i < maxiter; i++) f

z = M.solve(r);

rho = dot(r, z);

if (i == 1)

p = z;

else f

beta = rho1/ rho0;

p = z + p * beta;

g

q = A*p;

alpha = rho1 / dot(p, q);

x += alpha * p;

r -= alpha * q;

if (norm(r)/norm(b) < tol) break;

g

Figure 1: Comparison of an algorithm for the preconditioned conjugate gradient method and the correspond-

ing IML++ routine.

where � and � are scalars, B and C are rectangular

matrices, D is a (block) diagonal matrix, A and A0

are sparse matrices, and op(A) is either A or AT .

2.2 Matrix Construction and I/O

In dealing with issues of I/O, the C++ library is

presently designed to support reading and writing to

Harwell-Boeing format sparse matrix �les [3]. These

�les are inherently in compressed column storage;

however, since sparse matrices in the library can be

transformed between various data formats, this is

not a severe limitation. File input is embedded as

another form of a sparse matrix constructor. A �le

can also be read and transformed into another for-

mat using conversions and the iostream operators.

In the future, the library will also support other

matrix �le formats, such as Matlab
TM compatible

format, and IEEE binary formats. Sparse matrices

can also be initialized from conventional data and

index vectors, thus allowing a universal interface to

import data from C or Fortran modules.

3 Iterative Solvers

One motivation for this work is that high level ma-

trix algorithms, such as those found in [1], can be

easily implemented in C++. For example, con-

sider the preconditioned conjugate gradient algo-

rithm, used to solve Ax = b, with preconditioner

M . The comparison between the pseudo-code and

the C++ listing appears in Figure 1. Here the op-

erators such as * and += have been overloaded to

work with matrix and vectors formats. This code

fragment works for all of the supported sparse stor-

age classes and makes use of data and architecture

speci�c computational kernels (such as the proposed

Level 3 Sparse BLAS [4]).

Various iterative methods, as described in Bar-

rett et al. [1], have been incorporated into the design

of IML++, an Iterative Methods Library in C++.

The methods supported by the design of IML++,

together with their preconditioned counterparts, in-

clude:

� Jacobi SOR (SOR)

� Conjugate Gradient (CG)

� Conjugate Gradient on Normal Equations

(CGNE, CGNR)

� Generalized Minimal Residual (GMRES)

� Minimum Residual (MINRES)

� Quasi-Minimal Residual (QMR)

� Chebyshev Iteration (Cheb)

� Conjugate Gradient Squared (CGS)

� Biconjugate Gradient (BiCG)

� Biconjugate Gradient Stabilized (Bi-CGSTAB)

Sparse PCG
E

xe
cu

tio
n

tim
e

(s
ec

s)

SPARSKIT (f77)

la2d64 la2d128 la3d16 la3d32

SparseLib++ (C++)

Sun SPARC 10

5

10

15

20

25

Figure 2: Performance comparison of C++ (g++)

vs. optimized Fortran (f77 -O) on a Sun SPARC 10.

Although iterative methods have provided much

of the motivation for SparseLib++, many of the

same operations and design issues apply to direct

methods as well. In particular, some of the most

popular preconditioners, such as Incomplete LU

Factorization (ILU) [6], have components quite sim-

ilar to direct methods.

4 E�ciency

4.1 Performance

To get some measure of the e�ciency of our C++

class designs, we tested the performance of our

library modules against the public-domain For-

tran sparse matrix package SPARSKIT [7]. The

SPARSKIT package was designed as a \tool kit",

with one of its basic goals being to facilitate the

transfer of data among researchers in sparse matrix

computations, and peak e�ciency across machines

was not of primary concern. As such, we recognize

that it cannot be expected to provide ultimate per-

formance on any particular architecture. We use it

as a basis for comparison only to demonstrate that

the performance of our library is at least compara-

ble to good Fortran codes.

Figures 2 and 3 illustrate the performance of the

PCG method with diagonal preconditioning coded

with both our C++ library and with SPARSKIT

routines. The test matrices correspond to 2D and

Sparse PCG
IBM RS6000 Model 580

E
xe

cu
tio

n
tim

e
(s

ec
s)

SPARSKIT (f77)

1

2

3

4

5

6

7

la2d64 la2d128 la3d16 la3d32

SparseLib++ (C++)

Figure 3: Performance comparison of C++ (xlC)

vs. optimized Fortran (xlf -O) on an IBM RS/6000

Model 580.

3D �nite di�erence Laplacian operators, and we

solve r2u = 0 on grids of sizes 64� 64, 128� 128,

16�16�16, and 32�32�32. In all cases we utilized

full optimization of each compiler.

Table 1 shows a more detailed comparison of the

CPU times for Sparskit, for the C package, for

IML++/SparseLib++ with an operator overload-

ing interface, and for IML++/SparseLib++ with a

functional interface. In these tests, the C++ mod-

ules run slightly more e�ciently than their Fortran

counterparts. This is true because any overhead

in the C++ sparse matrix classes has been mini-

mized, and because we exploit the low-level Sparse

BLAS kernels. We expect that a Fortran package

which also exploited these kernels would achieve vir-

tually the same performance as our C++ library.

The main point is that it is possible to have an el-

egant coding interface (as shown in Figure 1) and

still maintain performance that is competitive with

conventional Fortran modules.

4.2 Memory Resources

The memory usage requirements of the C++ sparse

matrix objects are nearly identical to conventional

storage requirements in C or Fortran. For example,

anM�N compressed columnmatrix with nz nonze-

ros, requires nz
oating point numbers and nz +N

integer indices. The sparse matrix classes require

only two or three additional words for bookkeeping.

RS/6000 CPU Time SPARC 10 CPU Time

Problem Fortran C C++/fun C++/op Fortran C C++/fun C++/op

la2d64 0.74 0.55 0.65 0.95 3.09 2.55 2.583 3.27

la2d128 6.26 4.68 5.37 7.65 25.41 20.38 20.95 27.53

la3d16 0.27 0.21 0.24 0.32 1.15 0.95 1.00 1.28

la3d32 4.41 3.49 3.89 5.14 18.01 14.93 15.25 19.48

Table 1: Comparison between Fortran, C, and C++ codes for solving Poisson equations on RS/6000 Model

580 and SPARC 10. C++/op and C++/fun respectively indicate SparseLib using the operator and functional

interfaces.

When computing y = A*x, a temporary vector is

allocated, but the assignment into y is performed by

shallow assignment, rather than an O(N) memory

copy. Dense vectors and matrices utilize reference-

count schemes for automatic garbage collection.

5 Conclusion

We have demonstrated with our sparse matrix li-

brary of C++ classes, SparseLib++, that one can

abstract the underlying storage format details with-

out sacri�cing performance. The Sparse BLAS pro-

vide a framework that can optimized for a given ar-

chitecture while maintaining a consistent interface.

Our iterative methods library, IML++, can work

with any C++ matrix class employing basic opera-

tions, including distributed sparse and dense matri-

ces. In e�ect, we have separated the details of the

underlying data structure from the mathematical

algorithm. The result is a library of high level math-

ematical denotations which can run on distributed

networks, multicomputers, and single node work-

stations without modi�cation. These libraries are

essentially \data format free", providing increased

portability, readability, and reliability.

References

[1] R. Barrett et al. Templates for the Solution of

Linear Systems: Building Blocks for Iterative

Methods. SIAM Press, Philadelphia, 1994.

[2] J. Dongarra, J. Du Croz, I. S. Du�, and S. Ham-

marling. A set of level 3 basic linear algebra

subprograms. ACM Trans. Math. Soft., 16:1{

17, 1990.

[3] I. Du�, R. Grimes, and J. Lewis. Sparse matrix

test problems. ACM Trans. Math. Soft., 15:1{

14, 1989.

[4] I. Du�, M. Marrone, and G. Radicati. A pro-

posal for user level sparse BLAS. Technical re-

port, CERFACS TR/PA/92/85, 1992.

[5] M. A. Heroux. A proposal for a sparse

BLAS toolkit. Technical report, CERFACS

TR/PA/92/90, 1992.

[6] J. A. Meijerink and H. A. van der Vorst. An

iterative solution method for linear systems of

which the coe�cient matrix is a symmetric M -

matrix. Math. Comp., 31:148{162, 1977.

[7] Y. Saad. Sparskit: A basic toolkit for sparse

matrix computations. Technical report, NASA

Ames Research Center TR 90-20, 1990.

