
Article

Trace-based performance analysis
for the petascale simulation code
FLASH

Heike Jagode1, Andreas Knüpfer2, Jack Dongarra1,
Matthias Jurenz2, Matthias S Müller2, and Wolfgang E Nagel2

Abstract
Performance analysis of applications on modern high-end petascale systems is increasingly challenging due to the rising
complexity and quantity of the computing units. This paper presents a performance-analysis study using the Vampir
performance-analysis tool suite, which examines application behavior as well as the fundamental system properties. This
study was carried out on the Jaguar system at Oak Ridge National Laboratory, the fastest computer on the November
2009 Top500 list. We analyzed the FLASH simulation code that is designed to be scaled with tens of thousands of CPU
cores, which means that using existing performance-analysis tools is very complex. The study reveals two classes of per-
formance problems that are relevant for very high CPU counts: MPI communication and scalable I/O. For both, solutions
are presented and verified. Finally, the paper proposes improvements and extensions for event tracing tools in order to
allow scalability of the tools towards higher degrees of parallelism.

Keywords
collective I/O, collective MPI operations, event tracing, libNBC, Vampir

1 Introduction and background

Estimating achievable performance and scaling efficien-

cies in modern petascale systems is a complex task. Many

of the scientific applications running on such high-end

computing platforms are highly communication- as well

as data-intensive. For example, the FLASH application is

a highly parallel simulation with complex performance

characteristics.

The performance-analysis tool suite Vampir is used to

give deeper insights into performance and scalability prob-

lems of applications. It uses event tracing and post-mortem

analysis to survey the runtime behavior for performance

problems. This makes it challenging for highly parallel situa-

tions because it produces huge amounts of performance

measurement data (Brunst, 2008; Jagode et al., 2009).

The performance evaluation of the FLASH software

found two classes of performance issues that are relevant

with very high CPU counts. The first class is related to

inter-process communication and can be summarized as

‘overly strict coupling of processes.’ The second class is

due to the massive and scalable I/O within the checkpoint-

ing mechanism where the interplay of the Lustre file system

and the parallel I/O produces unnecessary delays. For both

types of performance problems, solutions are presented that

require only local modifications, not affecting the general

structure of the code.

This paper is organized as follows: First we provide a

brief description of the target system’s features. This is fol-

lowed by a summary of the performance-analysis tool suite

Vampir. A brief outline of the FLASH code is provided at

the end of the introduction and background section. In

Sections 2 and 3 we provide extensive performance mea-

surement and analysis results that were collected on the

Cray XT4 system, followed by a discussion of the perfor-

mance issues that were found, the proposed optimizations,

and their outcomes. Section 4 discusses our experiences

with the highly parallel application of the Vampir tools

as well as future adaptations for such scenarios.

The paper ends with the conclusions and an outlook for

future work.

1.1 The Cray XT4 system, Jaguar

We start with a short description of the relevant features of

the Jaguar system, the fastest computer on the November

1The University of Tennessee, USA
2Technische Universität Dresden, Germany

Corresponding author:

Heike Jagode, The University of Tennessee, Suite 413, Claxton, Knoxville,

TN 37996, USA

Email: jagode@eecs.utk.edu

The International Journal of High
Performance Computing Applications
25(4) 428–439
ª The Author(s) 2010
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342010387806
hpc.sagepub.com

2009 Top500 list.1 The Jaguar system at Oak Ridge

National Laboratory (ORNL) has evolved rapidly over the

last several years. When this work was carried out, it was

based on Cray XT4 hardware and utilized 7832 quad-core

AMD Opteron processors with a clock frequency of 2.1 GHz

and 8 GB of main memory (2 GB per core). At that

time, Jaguar offered a theoretical peak performance of 260.2

Tflops/s and a sustained performance of 205 Tflops/s on

Linpack.2 The nodes were arranged in a three-dimensional

torus topology of size 21� 16� 24 with SeaStar2.

Jaguar had three Lustre file systems of which two had

72 Object Storage Targets (OST) and one had 144 OSTs

(Larkin and Fahey, 2007). These file systems shared 72

physical Object Storage Servers (OSS). The theoretical

peak performance of the I/O bandwidth was � 50 GB/s

across all OSSes.

1.2 The Vampir performance-analysis suite

Before we show the detailed performance-analysis results,

we will briefly introduce the main features of the

performance-analysis suite Vampir (Visualization and

Analysis of MPI Resources) that was used for this paper.

The Vampir suite consists of VampirTrace for

instrumentation, monitoring, and recording as well as

VampirServer for visualization and analysis (Brunst,

2008).3.4 The event traces are stored in the Open Trace

Format (OTF) (Knüpfer et al., 2006). The VampirTrace

component supports a variety of performance features, for

example MPI communication events, subroutine calls from

user code, hardware performance counters, I/O events,

memory allocation, and more (Knüpfer et al., 2008).4 The

VampirServer component implements a client/server

model with a distributed server, which allows a very scal-

able interactive visualization for traces with over a thou-

sand processes and an uncompressed size of up to 100

GB (Knüpfer et al., 2008; Brunst, 2008).

1.3 The FLASH application

The FLASH application is a modular, parallel AMR (Adap-

tive Mesh Refinement) simulation code, which computes

general compressible flow problems for a large range of sce-

narios.5 FLASH is a set of independent code units, put

together with a Python language setup tool to create various

applications. Most of the code is written in Fortran 90 and

uses the Message-Passing Interface (MPI) library for

inter-process communication. The PARAMESH library

(MacNeice et al., 1999) is used for adaptive grids, placing

resolution elements only where they are needed most. The

Hierarchical Data Format, version 5 (HDF5), is used as the

I/O library offering parallel I/O via MPI-IO (Yang and

Koziol). For this study, the I/O due to checkpointing is most

relevant, because it frequently writes huge amounts of data.

We looked at the three-dimensional simulation test case

WD_Def, which is the deflagration phase of a gravitation-

ally confined detonation mechanism for type Ia

supernovae, a crucial astrophysical problem that has been

extensively discussed in [Jordan et al. (2008). The WD_Def

test case is generated as a weak scaling problem for up to

15,812 processors where the number of blocks remains

approximately constant per computational thread.

2 MPI performance problems

The communication layer is a typical place to look for per-

formance problems in parallel code. Although communica-

tion enables the parallel solution, it does not directly

contribute to the solution of the original problem. If com-

munication accounts for a substantial portion of the overall

runtime, it implies that there is a performance problem.

Most of the time, communication delays are due to wait-

ing for communicating peers. Usually, this becomes more

severe as the degree of parallelism increases.

This symptom is indeed present in the FLASH applica-

tion. Of course, it can easily be diagnosed on the basis of

profiling, but the statistical nature of profiling makes it

insufficient for detecting the cause of performance limita-

tions and even more so for finding promising solutions.

In the following, three different performance

problems are discussed, summarized as ‘overly strict

coupling of processes’. The problems found are hotspots

of MPI_Sendreceive_replace operations, hotspots of

MPI_Allreduce operations, and unnecessary MPI_Barrier

operations.

2.1 Hotspots of MPI_Sendrecv_replace calls

The first problem is a hotspot of MPI_Sendrecv_replace

operations. It uses six successive calls, sending small to

moderate amounts of data. Therefore, the single communi-

cation operations are latency bound and not bandwidth

bound. Interestingly, it propagates delays between con-

nected ranks, see Figure 1.

In the given implementation, successive messages

cause a recognizable accumulation of the latency values.

A convenient local solution is to replace this hotspot pattern

with non-blocking communication calls. As there is no

non-blocking version of MPI_Sendrecv_replace one can

emulate the same behavior by non-blocking point-to-

point communication operations MPI_Irecv, MPI_Ssend,

and a consolidated final MPI_Waitall call. This would not

produce a large benefit for a single MPI_Sendrecv_

replace call but it will for a series of such calls, because for

overlapping messages the latency values are no longer

accumulated. Of course, it requires additional temporary

storage, which is not critical for small and moderate data

volumes.

The actual performance gain from this optimization is

negligible at 1 to 2% at first. But together with the optimi-

zation described in Section 2.3 it will make a significant

performance improvement.

The symptom of this performance limitation is easily

detectable with profiling, because the accumulated runtime

Jagode et al. 429

of MPI_Sendrecv_replace would stand out. Yet, neither the

underlying cause nor the solution could be inferred from this

fact alone. Plain profiling is completely incapable of provid-

ing any further details because all information is averaged

over the complete runtime. With sophisticated profiling

approaches like call-path profiling or phase profiling one

could infer the suboptimal runtime behavior when studying

the relevant source code. But this is tedious and time consum-

ing especially if the analysis is not carried out by the author.

Only tracing allows convenient examination of the

situation with all necessary information from one source.

In particular, this includes the context of the calls to MPI_

Sendrecv_replace within each rank as well as the concur-

rent situations in the neighbor ranks, see Figure 1. To keep

the tracing overhead as small as possible and to provide a

sufficient and manageable trace file, we recorded tracing

information of the entire FLASH application using not

more than 256 compute cores on Jaguar.

2.2 Hotspots of MPI_Allreduce calls

The most severe performance issue in the MPI communica-

tion used in FLASH is a hotspot of MPI_Allreduce opera-

tions. Again, there is a series of MPI_Allreduce operations

with small to moderate data volumes for all MPI ranks. As

above, the communication is latency bound instead of band-

width bound.

In theory, one could also replace this section with a

pattern of non-blocking point-to-point operations

similar to the solution presented above. However, with

MPI_Allreduce or with collective MPI operations in gen-

eral, the number of point-to-point messages would grow dra-

matically with the number of ranks. This would make any

replacement scheme more complicated. Furthermore, it

would reduce performance portability since there is a high

potential for producing severe performance issues. Decent

MPI implementations introduce optimized communication

patterns, for example tree-based reduction schemes and

communication patterns adapted to the network topology.

Imitating such behavior with point-to-point messages is

very complicated or even impossible, because a specially

adapted solution will not be generic and a generic solution

will hardly be optimized for a given topology.

For this reason, the general advice to MPI users is to rely

on collective communication whenever possible (Hoefler

et al., 2007). Unfortunately, there are no non-blocking col-

lective operations in the MPI standard. So it is impossible

to combine a non-blocking scheme with a collective one,

at least for now (Hoefler et al., 2007).

However, this fundamental lack of functionality has

already been identified by the MPI Forum, the standardiza-

tion organization for MPI. As the long term solution to the

dilemma of non-blocking vs. collective, the upcoming MPI

3.0 standard will most likely contain a form of non-

blocking collective operation. Currently, this topic is under

discussion in the MPI Forum.6

As a temporary solution for this problem, libNBC can be

used (Hoefler et al., 2007). It provides an implementation

of non-blocking collective operations as an extension to the

MPI 2.0 standard with an MPI-like interface. For the actual

communication functionality, libNBC relies on non-

blocking point-to-point operations of the platform’s exist-

ing MPI library (Hoefler et al., 2007, 2008). Therefore, it

is able to incorporate improved communication patterns but

currently does not directly adapt to the underlying network

topology (compare above).

Still, the FLASH application gets a significant

performance improvement with this approach. This is

mainly due to the overlapping technique of the successive

NBC_Iallreduce operations (from libNBC) while multi-

ple MPI_Allreduce operations are executed in a strictly

sequenced manner.

Figure 1. Original communication pattern of successive MPI_Sendrecv_replace calls. Message delays are propagated along the
communication chain of consecutive ranks. See Figure 3 for an optimized alternative.

430 The International Journal of High Performance Computing Applications 25(4)

In Figure 2, two corresponding allreduce patterns are

compared.7 The original communication pattern spends

almost 3 s in MPI_Allreduce calls, see Figure 2 (top).

The replacement needs only 0.38 s, consisting mainly of

NBC_Wait calls because the NBC_Iallreduce calls are

too small to notice with the given zoom level, compare

Figure 2 (bottom). This provides an acceleration of more

than seven times for the communication patterns alone. It

achieves a total runtime reduction of up to 30% when

using 256 processes as an example (excluding initializa-

tion of the application).

Again, the actual reason for this performance problem is

easily comprehensible with the visualization of an event

trace. But it would be lost in the statistical results offered

by profiling approaches.

2.3 Unnecessary barriers

Another MPI operation consuming a high runtime share is

MPI_Barrier. For 256 to 15,812 cores, it uses about 18%
of the total execution time.

Detailed investigations with the Vampir tools reveal

typical situations where barriers are placed. It turns out that

most barriers are unnecessary for the correct execution

of the code. As shown in Figure 3 (top) such barriers are

placed before communication phases, probably in order

to achieve strict temporal synchronization, that is, making

communication phases start almost simultaneously.

A priori, this is neither beneficial nor harmful. Often, the

time spent in the barrier would be spent waiting at the

beginning of the next MPI operation if the barrier were

removed. This is true, for example, for the MPI_Sendrecv_

replace operation. Yet, for some other MPI operations the

situation is completely different. Removing the barrier will

save almost the total barrier time. This is found, for example,

with MPI_Irecv, which starts without an initial waiting time

once the barrier is removed. Here, unnecessary barriers are

very harmful.

Now, reconsidering the hotspots of MPI_Sendrecv_

replace calls discussed in Section 2.1, the situation has been

changed from the former case to the latter. So, the earlier

optimization receives a further improvement by removing

Figure 2. Corresponding communication patterns of MPI_Allreduce in the original code (top) and NBC_Iallreduce plus
NBC_Wait in the optimized version (bottom). The latter is more than seven times faster, taking 0.38 s instead of 2.95.

Jagode et al. 431

unnecessary MPI_Barrier calls. Figure 3 (bottom) shows

the result of the combined modification. According to the

runtime profile (not shown), the aggregated runtime of

MPI_Barrier is almost completely eliminated.

Besides the unnecessary barriers, there are also some

useful ones. These mainly belong to internal measurements

within the FLASH code, which aggregates coarse statistics

about total runtime consumption of various components.

Barriers next to checkpointing operations are also sensible.

By eliminating unnecessary barriers, the runtime share

of MPI_Barrier is reduced by 33%. This lowers the total

share of MPI by 13% while the runtime of all non-MPI

code remains constant. This results in an overall runtime

improvement of 8.7% when using 256 processes.

While the high barrier time would certainly attract atten-

tion in a profile, the distinction between unnecessary and

useful ones would be completely obscured. The alternative

is either a quick and easy look at the detailed event trace

visualization or tedious manual work with phase profiles

and scattered pieces of source code.

3 I/O performance problems

The second important issue for the overall performance of

FLASH code is the I/O behavior, which is mainly due to the

integrated checkpointing mechanism. We collected I/O

data from FLASH on Jaguar for jobs ranging from 256 to

15,812 cores. From this weak-scaling study it is apparent

that time spent in I/O routines began to dominate dramati-

cally as the number of cores increased. A runtime break-

down over trials with an increasing number of cores,

shown in Figure 4, illustrates this behavior.8 More precisely,

Figure 4(a) depicts the evolution of a selection of five impor-

tant FLASH function groups without I/O where the corre-

sponding runtimes grow not more than 1.5 times.9 The

same situation but with checkpointing, as in Figure 4(b),

shows a 22-fold runtime increase for 8,192 cores, which

clearly indicates a scalability problem.

In the following three sections, multiple tests are per-

formed with the goal of tuning and optimizing I/O perfor-

mance for the parallel file system so that the overall

performance of FLASH can be significantly improved.

3.1 Collective I/O via HDF5

For the FLASH investigation described in this section, the

Hierarchical Data Format, version 5 (HDF5), is used as the

I/O library. HDF5 is not only a data format but also a soft-

ware library for storing scientific data. It is based on a gen-

eric data model and provides a flexible and efficient I/O

Figure 3. Typical communication pattern in the FLASH code. An MPI_Barrier call before a communication phase ensures a
synchronized start of the communication calls (top). When the barrier is removed, the start operations are not synchronized (bottom).
Yet, this imposes no additional time on the following MPI operations, the runtime per communication phase is reduced by approxi-
mately 1=3.

432 The International Journal of High Performance Computing Applications 25(4)

API (Yang and Koziol). By default, the parallel mode of

HDF5 uses an independent access pattern for writing data-

sets without extra communication between processes.5

However, parallel HDF5 can also perform in aggrega-

tion mode, writing the data from multiple processes in a

single chunk. This involves network communications

among processes. Still, combining I/O requests from differ-

ent processes in a single contiguous operation can yield a

significant speedup (Yang and Koziol). This mode is still

experimental in the FLASH code. However, the consider-

able benefits may encourage the FLASH application team

to implement it permanently.

While Figure 4 depicts the evolution of five important

FLASH function groups only, Figure 5 summarizes the

weak-scaling study results of the entire FLASH simulation

code for various I/O options. It can be observed that collec-

tive I/O yields a performance improvement of 10% for small

core counts while for large core counts the entire FLASH

code runs faster by up to a factor of 2.5. However, despite

the improvements so far, the scaling results are still not satis-

fying for a weak-scaling benchmark. We found two different

solutions to notably improve I/O performance. The first one

relies only on the underlying Lustre file system without any

modifications of the application. The second one requires

changes in the HDF5 layer of the application. Therefore, the

latter is of an experimental nature but more promising in the

end. Both solutions are discussed below.

3.2 File striping in Lustre FS

Lustre is a parallel file system that provides high aggregated

I/O bandwidth by striping files across many storage devices

(Yu et al., 2007). The parallel I/O implementation of FLASH

creates a single checkpoint file and every process writes its

data to this file simultaneously via HDF5 and MPI-IO.5 The

size of such a checkpoint file grows linearly with the number

of cores. For example, in the 15,812-core case the size of the

checkpoint file is approximately 260 GB.

By default, files on Jaguar are striped across four OSTs.

As mentioned in Section 1.1, Jaguar consists of three file

systems of which two have 72 OSTs and one has 144 OSTs.

Hence, by increasing the default stripe size, the single

checkpoint file can take advantage of the parallel file sys-

tem, which should improve performance. Striping pattern

parameters can be specified on a per-file or per-directory

basis (Yu et al., 2007). For the investigation described in

this section, the parent directory has been striped across all

the OSTs on Jaguar, which is also suggested in Larkin and

Fahey (2007). More precisely, depending on what file sys-

tem is used, the Object Storage Client (OSC) communi-

cates via a total of 72 OSSes – which are shared between

all three file systems – to either 72 or 144 OSTs.

From the results presented in Figure 5, it is apparent that

using parallel collective I/O in combination with striping

the output file over all OSTs is highly beneficial. The

results show a further improvement by a factor of 2 for mid-

size and large core counts by performing collective I/O

with file striping compared to the collective I/O results.

This yields an overall improvement for the entire FLASH

code by a factor of 4.6 when compared to the results from

the naı̈ve parallel I/O implementation.

This substantial improvement can be verified by the

trace-based analysis of the I/O performance counters for

Figure 5. FLASH scaling study with various I/O options

Figure 4. Weak-scaling study for a selection of FLASH function groups: (a) scalability without I/O and (b) break-down of scalability due
to checkpointing

Jagode et al. 433

a single checkpoint phase, as shown in Figure 6. This

reveals that utilizing efficient collective I/O in combination

with file striping (right) results in a faster as well as a

more uniform write speed, while the naı̈ve parallel I/O imple-

mentation (left) behaves more slowly and rather irregularly.

3.3 Split writing

By default, the parallel implementation of HDF5 for a

PARAMESH (MacNeice et al., 1999) grid creates a single

file and the processes write their data to this file simultane-

ously.5 However, it relies on the underlying MPI-IO layer

in HDF5. Since the size of a checkpoint file grows linearly

with the number of cores, I/O might perform better if all

processes write to a limited number of separate files rather

than to a single file. Split file I/O can be enabled by setting

the outputSplitNum parameter to the number N of files

desired.5 Every output file will be then broken into N

subfiles. It is important to note that the use of this mode

with FLASH is still experimental and has never been used

in a production run. This study uses collective I/O opera-

tions but the file striping is set to the default position on

Jaguar. Furthermore, it is performed for two test cases only

but with various numbers of output files. Figure 7 shows

the total execution time for FLASH running on 2,176 and

8,192 cores while the number of output files varies from

1 (which is default) to 64 and 4,096 respectively. In this fig-

ure the results from the split-writing analysis are compared

with those from collective I/O investigations where data is

written to a single file.

For the investigated cases, it is noticeable that writing

data to multiple files is more efficient than writing to a sin-

gle file followed by striping the file across all OSTs. This is

most likely due to the overhead of the locking mechanism

Figure 6. Performance counter displays for the write speeds of processes. The original bandwidth utilization is slow and irregular (left).
It becomes faster and more uniform when using collective I/O in combination with file striping (right). All counters show the aggregated
per-node bandwidth of four processes. (The rather slow maximum bandwidth of 6 MB/s corresponds to a share of the total bandwidth
for 1004 out of 31,328 cores for the scr72a file system.)

434 The International Journal of High Performance Computing Applications 25(4)

in Lustre. For the 2,176-core run it appears that writing to

32 separate files delivers the best performance. Even when

compared with the ’collective I/O þ file striping’ trial that

has a runtime of � 529 seconds, the split writing strategy

decreases the runtime to � 381 seconds and delivers a

speedup of approximately 28% for the entire application.

For the same comparison, the 8,192-core run saw a runtime

reduction from� 1551 to� 575 seconds when data is writ-

ten to 2,048 separate files. This results in a performance

gain of nearly a factor of 2.7. Note the slowdown for the

8,192-core run when going from 2,048 files to 4,096 files.

This issue might be due to using too many files. It is

intended to carry out further research to find the optimal

file size and the optimal number of files to obtain the best

performance.

3.4 Limited I/O-tracing capabilities on Cray XT4

The I/O tracing capabilities of VampirTrace are very lim-

ited on the Jaguar system, because two important features

cannot be used. The first is the recording of POSIX I/O

calls, which is deactivated because of the absence of shared

library support on the compute nodes. The second is the

global monitoring of the Lustre activity, which would

require administrative privileges. Both features are exten-

sively described in Mickler et al. (2008) and Jurenz.4

Therefore, the only alternative was to rely on client-side

Lustre statistics, which are shown in Figure 6. They repre-

sent the total I/O activity per compute node with a maxi-

mum granularity of 1=s.

This compromise solution is sufficient for a coarse anal-

ysis of the checkpoint phases and the I/O speed. It allows us

to observe the I/O rate over time, the load balance across all

I/O clients for each individual checkpoint stage, and in gen-

eral to observe the distributions of I/O among the processes.

Due to the limitations and due to the coarse sampling rate,

the I/O performance information comes close to what an

elaborate profiling solution could offer. Still, to the best

of our knowledge, there is no such profiling tool for parallel

file systems available. However, more detailed insights into

the behavior of the HDF5 library would be desirable, for

example, concerning block sizes and scheduling of low-

level I/O activities. An I/O monitoring solution (which

works on this platform) as described in Mickler et al.

(2008) would also allow observation of the activities on

the metadata server, the OSSes, and the RAID systems.

4 Lessons learned with tracing

Event tracing for highly scalable applications is a challen-

ging task, in particular due to the huge amount of data gen-

erated. The default configuration of VampirTrace is limited

to record not more than 10,000 calls per subroutine and

rank (MPI process) and to 32 MB of total uncompressed

trace size per rank. This avoids excessively huge trace files

and allows the generation of a custom filter specification

for successive trace runs. These filters reduce frequent sub-

routine calls completely and keep high-level subroutines

untouched. Usually, this results in an acceptable trace size

per process and a total trace size that grows linearly with

the number of parallel processes. Filtering everything

except MPI calls is a typical alternative if the analysis

focuses on MPI only. With the FLASH code, the filtering

approach works well and creates reasonably sized traces.

As an exception, additional filtering for the MPI function

MPI_Comm_rank was necessary, because it is called hun-

dreds of thousands of times per rank.

The growth of the trace size is typically not linear with

respect to the runtime or the number of iterations. Instead,

there are high event rates during initialization with many

different, small, and irregular activities. Afterwards, there

is a slow linear growth proportional to the number of itera-

tions. This can be roughly described by the following

relation

trace size ¼ 6 MB=rank þ 0:1 MB=iteration=rank ð1Þ

(in compressed OTF format) where the first part relates to

initialization.

On the analysis and visualization side, VampirServer

provides very good scalability because of its client/server

architecture with a distributed server. It is able to handle

1 to n trace processes with one analysis process and

requires approximately the uncompressed trace file size

in distributed main memory. This combined approach is

feasible up to a number of several hundred to a few thou-

sand processes but not for tens of thousands because of the

following reasons:

1. the total data volume grows to hundreds of GB,

2. the distributed memory consumption for analysis, and

3. the limited screen size and limited human visual

perception.

For the three problems, there are different solutions. The

general method for this paper was to perform trace runs

Figure 7. I/O analysis of writing data to a single file vs. multiple
files.

Jagode et al. 435

with medium-scale parallelism (several hundred to a few

thousand ranks). Then identify and investigate interesting

situations based on these experiments, interpolating the

behavior for even larger rank counts. This successfully

reveals various performance problems and allows the

design of effective solutions. Yet, it is not sufficient for

detecting performance problems that emerge only for even

higher degrees of parallelism.

Some of the current investigations are also based on ana-

lyzing partial traces where all processes are recorded but

only a (manual, by modifying the anchor file of an OTF

trace) selection is loaded by VampirServer. This results

in few warnings about incomplete data, yet the remaining

analysis works as before.

5 Future plans

For a future solution, we propose a new partial tracing

method as the result of the presented study. It will apply

different levels of filtering, based on the assumption that

(most) processes in SPMD (Single Program Multiple

Data) applications behave very similarly. Only a selected

set of processes is considered for normal tracing including

normal filtering. For another set, there will be a reduced

tracing, that collects only events corresponding to the

first set, for example, communication with peers in the

first set. All remaining processes will refrain from record-

ing any events.

The longer term development will focus on the auto-

matic detection of regular sections in an event trace in order

to reduce the amount of data for a deeper analysis. Based on

this, the visualization will provide a high-level overview of

regular areas of a trace run as well as anomalous features.

Then, a single instance of a repeated pattern will serve as

the basis for a more detailed inspection. Single outliers with

notably different behavior can be easily identified and com-

pared with the regular case.

6 Related work

Detailed performance-analysis tools are becoming more

crucial for the efficiency of large scale parallel applications

and at the same time the tools face the same scalability

challenges. Currently, this seems to produce two trends.

On the one hand, profiling approaches are enriched by

additional data, for example, with phase profiles or call

path profiles (Malony et al., 2006; Szebenyi et al., 2009).

On the other hand, data intensive event tracing methods

are being adapted for data reduction, for example, the

extension in Paravar by Casas et al. (2007). A compromise

between profiling and tracing was proposed by Fürlinger

and Skinner (2009).

A way to cope with huge amounts of event trace data

was initially proposed by Knüpfer and Nagel (2006) and

Knüpfer (2008), with the Compressed Call Graph method,

followed by Noeth et al. (2009) with the ScalaTrace

approach for MPI replay traces. Both can be used for

automatic identification and utilization of regular repetition

patterns. In the past, the same goal has been sought with

different methods (Roth et al., 1996; Samples, 1989).

A good overview of the different approaches used by Moh-

ror et al. can be found in (Mohror and Karavanic, 2009).

7 Conclusions

This paper presents a performance-analysis study of the

parallel simulation software FLASH that examines the

application behavior as well as the fundamental high-

end petascale system hierarchies. The approach is per-

formed using the scalable performance-analysis tool suite

called Vampir on the ORNL’s Cray XT4 Jaguar system.

The trace-based evaluation provides important insights

into performance and scalability problems and allows us

to identify two major bottlenecks that are of importance

for very high CPU counts.

The FLASH application was considered to be already

rather well optimized. In our opinion, the fact that we were

able to identify notable possibilities for improvement still

shows that high-scale performance is a very complex topic

and that specially tailored tools are crucial.

The use of the Vampir suite allows not only the detec-

tion of severe hotspots in some of the communication pat-

terns used in the FLASH application but is also beneficial

in pointing to feasible solutions. Consequently, a speedup

of the total runtime of up to 30% can be achieved by

replacing multiple, strictly successive MPI_Allreduce

operations by non-blocking NBC_Iallreduce operations

(from libNBC) that permit overlapping of messages.

Furthermore, another MPI-related bottleneck could

be eliminated by substituting the latency-bound MPI_

Sendrecv_replace operations with non-blocking com-

munication calls; as well as by removing unnecessary

MPI_Barrier calls. This reduces the total portion of MPI

in FLASH by 13% while the runtime of all non-MPI code

remains constant.

A deeper investigation of the causes for the time spent in

FLASH routines shows in particular that time spent in I/O

routines began to dominate dramatically as the number of

CPU cores increased. A trace-based analysis of the I/O

behavior allows a better understanding of the complex per-

formance characteristics of the parallel Lustre file system.

Using various techniques, like aggregating write opera-

tions, allowing the data from multiple processes to be writ-

ten to disk in a single path, in combination with file striping

across all OSTs, yields a significant performance improve-

ment by a factor of 2 for midsize CPU counts and approx-

imately 4.6 for large CPU counts for the entire FLASH

application. An additional investigation shows that writing

data to multiple files instead of a single file delivers a per-

formance gain of nearly a factor of 2.7 for 8,192 cores, for

example. Since the size of the output file grows linearly

with the number of cores, it is planned to find the optimal

file size and optimal number of output files to obtain the

best performance for various core cases.

436 The International Journal of High Performance Computing Applications 25(4)

Acknowledgements

The authors would like to thank the FLASH application team, in

particular Chris Daley for his continuous support of the applica-

tion. Furthermore, Jeff Larkin (Cray) is highly acknowledged for

providing valuable insights into the Lustre file system on Jaguar.

The authors would also like to thank David Cronk (UTK) for dis-

cussions about various MPI I/O implementations.

Funding

This research was sponsored by the Office of Mathematical, Infor-

mation, and Computational Sciences of the Office of Science, US

Department of Energy, under Contract No. DE-AC05-00OR22725

with UT-Battelle, LLC. This work used resources of the National

Center for Computational Sciences at Oak Ridge National Labora-

tory, which is supported by the Office of Science of the Department

of Energy under Contract DE-AC05-00OR22725. This resource

was made available via the Performance Evaluation and Analysis

Consortium End Station, a Department of Energy INCITE project.

Conflict of interest statement

None declared.

Notes

1. Top500 list, Nov. 2009, http://www.top500.org/list/2009/11/

100.

2. Top500 list, June 2008, http://www.top500.org/list/2008/06/

100.

3. VampirServer User Guide, http://www.vampir.eu.

4. M. Jurenz, VampirTrace Software and Documentation, ZIH,

Technische Universität Dresden, http://www.tu-dresden.de/

zih/vampirtrace.

5. ASC FLASH Center University of Chicago, FLASH Users

Guide Version 3.1.1, January 2009.

6. MPI: A Message-Passing Interface – Standard Extension:

Nonblocking Collective Operations (draft), Message Passing

Interface Forum, Jan 2009, https://svn.mpi-forum.org/trac/

mpi-forum-web/wiki/NBColl.

7. Event tracing allows identification of exactly corresponding

occurrences for compatible test runs. In this example both are

at the middle of the total runtime.

8. Because of the extreme complexity of FLASH, we focus on

those FLASH function groups that show poor scaling behavior

possibly due to I/O function calls.

9. When compared to the 256-core case. With ideal weak-scaling

it should be constant.

References

Brunst H (2008) Integrative concepts for scalable distributed per-

formance analysis and visualization of parallel programs, PhD

thesis, Shaker Verlag.

Casas M, Badia RM and Labarta (2007) Automatic structure

extraction from mpi applications tracefiles. In: Proceedings

of Euro-Par 2007, Springer LNCS 4641, Rennes, France.

Fürlinger K and Skinner D (2009) Capturing and visualizing

event flow graphs of MPI applications. In: Proceedings of

Workshop on Productivity and Performance (PROPER

2009) in conjunction with Euro-Par 2009, Delft, The

Netherlands, Aug.

Hoefler T, Gottschling P and Lumsdaine A (2008) Leveraging

non-blocking collective communication in high-performance

applications. In: SPAA’08, Proceedings of the 20th Annual

Symposium on Parallelism in Algorithms and Architectures,

Munich, Germany, ACM, pp. 113–15.

Hoefler T, Kambadur P, Graham RL, Shipman G and Lumsdaine

A (2007) A case for standard non-blocking collective opera-

tions. In: Recent Advances in Parallel Virtual Machine and

Message Passing Interface, EuroPVM/MPI 2007, Springer

LNCS 4757, pp. 125–34.

Jagode H, Dongarra J, Alam S, Vetter J, Spear W, Malony A

(2009) A Holistic Approach for Performance Measurement

and Analysis for Petascale Applications, ICCS 2009, Part II,

LNCS 5545. Berlin, Heidelberg: Springer-Verlag, 686–95.

Jordan GC, Fisher RT, Townsley DM, ACalder AC, Graziani C,

Asida S, et al. (2008) Three-dimensional simulations of the

deflagration phase of the gravitationally confined detonation

model of type Ia supernovae. The Astrophysical Journal,

681: 1448–57.

Knüpfer A (2008) Advanced memory data structures for scalable

event trace analysis, PhD thesis, Technische Universität

Dresden.

Knüpfer A and Nagel WE (2006) Compressible memory data

structures for event-based trace analysis. Future Generation

Computer Systems 22(3): 359-68.

Knüpfer A, Brendel R, Brunst H, Mix h and Nagel WE (2006)

Introducing the Open Trace Format (OTF). In: Proceedings

of the ICCS 2006, part II. pp. 526–533, Reading, UK.

Knüpfer A, Brunst H, Doleschal J, Jurenz M, Lieber M, Mickler

H, Müller M and Nagel WE (2008) The Vampir performance

analysis tool-set. In: Tools for High Performance Computing,

Springer Verlag, 139-55.

Larkin J and Fahey M (2007) Guidelines for efficient parallel I/O

on the Cray XT3/XT4. In: Proceedings of Cray User Group.

MacNeice P, Olson KM, Mobarry C, deFainchtein R, Packer C

(1999) PARAMESH: A parallel adaptive mesh refinement

community toolkit, NASA/CR-1999-209483.

Malony AD, Shende SS and Morris A (2006) Phase-based parallel

performance profiling, parallel computing: current & future

issues of high-end computing. In: Proceedings of ParCo

2005, Jülich, Germany.

Mickler H, Knüpfer A, Kluge M, Müller M and Nagel WE (2008)

Trace-based analysis and optimization for the Semtex CFD

application – hidden remote memory accesses and I/O perfor-

mance. In: Euro-Par 2008 Workshops – Parallel Processing,

Las Palmas de Gran Canaria, pp. 287-296, Springer LNCS

5415, Aug.

Mohror K and Karavanic KL (2009) Evaluating similarity-

based trace reduction techniques for scalable performance

analysis. In: Proceedings of SC ’09, pp. 1–12, Portland,

Oregon.

Noeth M, Ratn P, Mueller F, Schulz M and de Supinski BR (2009)

ScalaTrace: Scalable compression and replay of communica-

tion traces for high performance computing. Journal of

Parallel and Distributed Computing 69(8): 696–710.

Jagode et al. 437

Roth PC, Elford C, Fin B, Huber J, Madhyastha T, Schwartz B

and Shields K (1996) Etrusca: Event Trace Reduction Using

Statistical Data Clustering Analysis, PhD thesis.

Samples AD (1989) Mache: No-loss trace compaction. In: Pro-

ceedings of the 1989 ACM SIGMETRICS international con-

ference on Measurement and modeling of computer systems,

pp. 89–97, Oakland, California, USA.

Szebenyi Z, Wolf F and Wylie BJN (2009) Space-efficient time-

series call-path profiling of parallel applications. In: SC09: Pro-

ceedings of the Conference on High Performance Computing

Networking, Storage and Analysis, Portland, Oregon, USA.

Yang M and Koziol Q. Using collective IO inside a high perfor-

mance IO software package – HDF5, www.hdfgroup.uiuc.edu/

papers/papers/ParallelIO/HDF5-CollectiveChunkIO.pdf

Yu W, Vetter J, Canon RS and Jiang S (2007) Exploiting Lustre

file joining for effective collective IO. In: Int. Conference on

Clusters Computing and Grid (CCGrid ’07), Rio de Janeiro,

Brazil, IEEE Computer Society.

Authors Biographies

Heike Jagode received BSc and MSc degrees in Applied

Mathematics from the University of Applied Sciences,

Mittweida, Germany, in 2001. She earned a second MSc

in High Performance Computing from the University of

Edinburgh, Edinburgh Parallel Computing Centre (EPCC),

in Scotland in 2006. She was a Research Associate at the

Center for Information Services and High Performance

Computing (ZIH) at Dresden University of Technology in

Germany from 2002 to 2008. Since March 2008 she has

been a Senior Research Associate at the Innovative

Computing Laboratory (ICL) at the University of

Tennessee in Knoxville (UTK). Her current research

interests include studies in computer science for

performance of high-performance computing applications

and architectures, focusing primarily on developing

methods and tools for scalable performance analysis,

tuning, and optimization of HPC applications. She is also

currently enrolled in a PhD program at the Department of

Computer Science at UTK (since fall 2009).

Andreas Knüpfer is a research scientist at the Center for

Information Services and HPC at Technische Universität

Dresden. His fields of interest are parallel programming

paradigms and HPC performance analysis. He received a

diploma in mathematics in 2002 and a doctorate in

computer science in 2008, both from TU Dresden.

Jack Dongarra is a University Distinguished Professor of

Computer Science in the Electrical Engineering and

Computer Science Department at the University of

Tennessee and is a Distinguished Research Staff in the

Computer Science and Mathematics Division at Oak Ridge

National Laboratory (ORNL), Turing Fellow in the

Computer Science and Mathematics Schools at the Univer-

sity of Manchester, and an Adjunct Professor in the Computer

Science Department at Rice University. He specializes in

numerical algorithms in linear algebra, parallel computing,

use of advanced-computer architectures, programming

methodology, and tools for parallel computers. His research

includes the development, testing, and documentation of

high-quality mathematical software. He has contributed to the

design and implementation of the following open source

software packages and systems: EISPACK, LINPACK, the

BLAS, LAPACK, ScaLAPACK, Netlib, PVM, MPI,

NetSolve, Top500, ATLAS, Open-MPI, and PAPI. He has

published approximately 300 articles, papers, reports, and

technical memoranda and he is co-author of several books.

He was awarded the IEEE Sid Fernbach Award in 2004 for

his contributions to the application of high-performance

computers using innovative approaches and in 2008 he was

the recipient of the first IEEE Medal of Excellence in Scalable

Computing; in 2010 he was the first recipient of the SIAM

Special Interest Group on Supercomputing’s award for

Career Achievement. He is a Fellow of the AAAS, ACM,

IEEE, and SIAM, and a member of the National Academy

of Engineering.

Matthias Jurenz is a technical employee at the Center for

Information Services and HPC at Technische Universität

Dresden. He is the main developer of the performance mea-

surement software tool VampirTrace. He completed an

apprenticeship as software engineer at TU Dresden in 2002.

Matthias S Müller is deputy director and CTO of ZIH at TU

Dresden. He received a PhD in Computational Physics from

Stuttgart University in 2001. From 1999 to 2005 he worked

at the High Performance Computing Center in Stuttgart,

Germany, becoming deputy director. His research interests

include programming methodologies and tools, computa-

tional science on high-performance computers, and grid

computing. He is the author or co-author of more than

70 refereed publications on these topics. He is also head of

the VampirTrace development group. He is a member of the

German Physical Society (DPG) and Vice Chair of SPEC’s

High Performance Group.

Prof Dr Wolfgang E Nagel holds the Chair for Computer

Architecture at Technische Universität Dresden (TUD). After

his university studies of computer science at RWTH Aachen

from 1979 to 1985, he worked in the area of parallel

computing at the Central Institute for Applied Mathematics,

Research Center Jülich, and at the Center for Advanced

Computing Research (CACR), Caltech. Since 1997, he has

been director of the Center for Information Services and High

Performance Computing (ZIH) - the former Center for HPC

438 The International Journal of High Performance Computing Applications 25(4)

(ZHR) - at TUD, which was founded by him. From 2006 to

2009, he served as dean of the Computer Science department

at TUD. His research profile covers modern programming

concepts and software tools to support complex compute

intensive applications, analysis of innovative computer

architectures, and the development of efficient algorithms

and methods. He has published about 110 papers in those

areas, and has contributed as program committee member,

program chair, or general chair at more than 45 conferences

and workshops.

Jagode et al. 439

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

