Applying Aspect-Orient Programming Concepts to
a Component-based Programming Model

Thomas Eidson, Jack Dongarra and Victor Eijkhout

Abstract— The execution environments For scientific applica-
tions have evolved significantly over the years. Vector and parallel
architectures have provided significantly faster computations.
Cluster computers have reduced the cost of high-performance
architectures. However, the software development environments
have not keep pace. Object-oriented and component-based lan-
guages have not been widely adopted. Distributed computing on
local area networks and Grids is only being used by a most
number of applications.

Clearly, there is a need for development environments that
support the efficient creation of applications that use modern
execution systems. This has been the goal of a continuing research
effort over the last several years. The previous focus has been
on using component-based ideas to develop a programming
model and associated framework to support such a development
approach. In this paper, two additional concepts are added to the
base approach. Aspect-oriented concepts are applied to support
the reduction of intertwined code related to different program-
ming concerns; mixing 1/0 with a numerical computation is one
example. Particularly in large applications, intertwining code can
lead to applications that are difficult to modify and to manage.
The second concept being added is the use of behavioral meta-
data. When coupling smaller pieces of code (or components) to
make a larger composite application, one needs to determine the
suitability of the internal behavior of component as well as the
compatibility of its interfaces. The objective is to integrate some
of this information into the component and design a framework
assist the programmer in making these decisions.

I. OBJECTIVE OF TARGET FRAMEWORK
A. The Focus for the Programming Model

Programming efficiency has generally been a problem in
the development of scientific applications. [1] [2] Application
developers must juggle a number of concerns, which include
the correct implementation of algorithms, high performance
requirements, and use of large data sets. The need to analyze
the output adds other programming aspects, such as the use
of graphics routines. The ever changing architecture designs
of computers further complicates the scenario. Also, target
problems are transitioning from a narrow focus (i.e., the
study of an isolated physical phenomenon) to multi-discipline
applications where different element applications must interact
to correctly capture the target problem. [3] [4] And, the need
to share part or all of an application is increasing.

Clearly, the development of modular, well-organized ap-
plications that are portable is an important goal of most
application developers. The use of library packages has tra-
ditionally been the means of supporting such a programming
requirement. But, many applications still end up with the

Old Dominion University, Norfolk, VA
University of Tennessee, Knoxville TN 37996

different types of programming aspects coded in an intertwined
style which results in applications that are hard to decipher and
to manage. The intertwining is done sometimes to improve
the performance of applications, but also is done because
traditional programming systems do not provide or encourage
alternatives.

Humans are better able to understand and manage complex
systems if they can be described as a set of individual concepts
along with a set of coupling procedures. Object-oriented and
component-based systems provide some support, but they still
leave difficult implementation details to the programmer. A
programming approach, referred to as aspect-oriented pro-
gramming (AOP) is particularly focused on the programming
of cross-cutting aspects of applications. [5] [6] An AOP-based
system should encourage and make straightforward the coding
of different programming aspects. The system should then
provide support for weaving those aspects to generate a correct
and efficient program. This can be done both during compile
and execution phases.

In this paper, the primary concepts behind a proposed
component-based framework for high-performance distributed
scientific applications are discussed. These concepts are a re-
sult of years of experience in developing scientific applications
and associated programming environments. [7] [8] [9] [4] [10]
The framework being built uses a modular programming
approach and uses meta-data to describe various aspects
of the application design and thus compliment the primary
algorithms that are described by traditional programming
languages. The framework will provide support for weaving
the separately coded aspects together to support the building
of flexible, portable applications with good execution perfor-
mance that model complex physical problems.

Il. DEFINITIONS

1) A framework is an integrated collection of software
tools that facilitates the development and execution of
an application.

2) An element application is a code in stand-alone exe-
cutable or library form, that is focused on a relatively
narrow aspect of some physics, mathematics, graphics,
or other science.

3) A task refers to a unique use of an element application.
For example, each entry point into the code for an
element application can define a different task. Also,
configuration details for an application could be used
to define different tasks that use the same entry point.
However, different arguments passed to an entry point
would not be considered as a new task.



4) A context is defined as a collection of tasks and data sets
packaged for execution and interaction with each other.
These tasks and data sets share a common address space.
A Unix process is an example of a context.

5) A platform is one or more computers managed as a
single entity that is connected via a network to other
platforms. A collection of hardware with multiple CPUs
that is managed as an unit with the intent of running
the same code on all CPUs (generally, in a data-parallel
style) is considered one platform.

6) A composite application is a collection of tasks and
associated data that would benefit from being distributed
among several contexts located on several platforms.
The application typically includes a range of data and
event transfer operations between the various tasks and
contexts that make-up the application. For this discus-
sion, a data-parallel code is considered as one task that
runs in one multiply executed context on one multi-node
platform.

7) A composite application is generally built by combining
several element applications together under the control
of a work-flow description. The work-flow code gener-
ally runs in a console or desktop environment associated
with a framework.

8) A software component is a basic unit of software pack-
aged for use in efficiently building some larger com-
posite application. [11] The software package includes
meta-data that defines any interfaces to that software
so that some framework can more easily provide the
necessary integration. Software component technology
is intended

« to support software reuse and sharing,

« to simplify use of multiple languages,

« to support the efficient building of large applica-
tions, and

« to assist building distributed applications.

A. Target Applications

The proposed framework will target applications that poten-
tially have a wide range of requirements. The focus will be on
composite applications that couple element applications that
require high-performance supercomputers with other element
applications that runs on a workstations. So, while the details
of developing individual elements are important, the proposed
framework primarily addresses the integration of all these
elements. An important emphasis will be on handling elements
that are located across a heterogeneous network of computers.
This includes the coupling of both loosely- and tightly-coupled
element applications.

The target applications are assumed to include a significant
number of executables, files, data transfers, events, computing
resources and other entities that need programming control.
For large applications, this means that a good organizational
strategy is needed to manage all the configuration and control
information that results in a correct execution. On the other
hand, the basic approach must also support its use with small
development applications. Large composite application will

evolve from small element applications. The large overhead
of modifying element applications has often been an obstacle
to building composite applications.

I1l. THE PROGRAMMING MODEL
A. Programming Components and Meta-data

Most composite, distributed applications can be imple-
mented via a set of software components that are controlled
by remote requests from some work-flow program and by
using the services provided by some framework. Complex
applications will need to allow remote user code to also issue
remote requests. The role of the framework is to manage the
connections between the various local and remote components
and to provide functionality that facilitates the programming
and execution of the composite application.

The success of a programming model and an associated
framework for developing such applications can vary depend-
ing on how well the framework matches the needs for com-
plexity of the application. A good programming model needs
to balance programming flexibility and efficiency with the ap-
plication execution efficiency and accuracy. Programmers like
for the programming abstractions to suggest good program-
ming construction while also providing flexible control with a
range of options. Most component-based programming models
focus on the flexible management of software component (or
task) executions. But in many distributed applications, other
programming entities need to be managed besides the task
programming entity.

Different types of programming entities might include con-
texts, platforms, data sets, events, files, messages, and other
aspects of a code that define execution requirements other than
the core computation aspects (i.e., the basic algorithm being
modeled). The base idea in the proposed programming model
is to treat these programming entities in a similar manner
as the task programming entity is typically programmed in a
component-based system. In the proposed model, a Program-
ming Component is defined as a programming entity plus a
set of meta-data along with a set of framework methods. [12]
A Programming Component family is a set of Programming
Components all with the same programming entity type. The

Console Context

Server Context X N Server Context Y

7/
server controller e So server controller

N

Task R.1 Task R.2

Fig. 1. Task Programming in a Framework



meta-data is a set of configuration data that defines interfaces,
parameters, macros, and separate aspect code related to the
programming entity. Framework methods are a library of
routines (functions, methods, subroutines) that are provided by
the framework to perform operations specific to each Program-
ming Component family. (Framework methods are discussed
in more detail in the next section.) Generally, they use the
meta-data rather than arguments to define specific functionality
desired by a programmer. They can be implemented as direct
calls to library routines or as services provided locally or
remotely. The essential feature of a service is that it is executed
as a separate computational thread. This allows for parallel
execution to support performance needs but also allows a
service thread to manage related aspects that are programmed
in multiple places in an application.

B. Base Use of Programming Components

The original objective of the proposed programming
model was to support the management of large compos-
ite applications. It evolved from a distributed application
built several years ago named FIDO and was refined dur-
ing the development of a subsequent prototype framework,
LAWE. [4] [10] [8] The goal of the FIDO project was to
a implement a multi-component application, the multidisci-
plinary design optimization of a specific airplane, into an
integrated system that ran on a heterogeneous network. The
number of programming entities of each type was of order
10. Configuration files were defined in an ad hoc manner
to store similar types of information. The result was an
organized system that was reasonable but that probably would
not scale to more complex problems. Upon review of the
project, it became clear that organizing the configuration data
around specific programming entities resulted in an overall

Argunents ri[2], ro[2]
Handl e HX, HY, HRl, HR2

HX = Create_context("X")

/1 HX - a handle for Context X
HY = Create_context("Y")

/!l HY - a handle for Context Y
HR1 = Di scover _task("R", HX)

/! HR1L - a handle for Task R 1
HR2 = Di scover_task("R", HY)

/! HR2 - a handle for Task R 2

while(1l) {
Create_input(ri)
Execute_task(HRL, ri[1])
/] Execute_task - "use" procedure
Execute_task(HR2,ri[2])

<ot her conputations>

Wi t _on_el enent s(HRL, HR2)
/1 Vit_on_elenents - "wait" procedure
ro[1] = Get_results(HRL)
ro[2] = Get_results(HR2)
if (Results_satisfactory(ro)) break

Fig. 2. Pseudo-code for Work-flow Program

organizational structure that was efficient to program. The
LAWE system was built around a meta-data database for
Programming Components where the application developer
defined specific Programming Components for a target appli-
cation. The result was a clear and efficient description of a
composite application.

The proposed approach supports the accurate programming
of the various global programming entities. The application
developer creates one or more definitions (or members) of
each Programming Component family which are stored in
a composite application database. Each individual definition
(conceptually similar to a class object in object-oriented lan-
guages) has a global name to support its accurate use in differ-
ent codes which could be written by different programmers.
For example, a data set entity that is transferred between two
task codes will have only one definition; that being the one in
the database.

At runtime, the framework, the work-flow code, or even
a user task code can create instances of each member of
a Programming Component family. These instances have an
identity that can be shared among the various user code to
further support accurate programming. The framework will
provide services to support the discovery of instances created
by the framework or other tasks.

Figure 1 shows an example application with two task
families. Task C runs in a console context (i.e., a process on the
user’s desktop) and Task R runs on a remote-server context
(i.e., a process on some remote computer). Pseudo-code for
Task C that defines the work-flow is shown in Figure 2. In
this example, Task C creates two contexts, X and Y, each of
which have been configured to include an instance of task R—
R.1 and R.2. In this example, the instances of R are assumed
to be created as part of the creation of the associated context
and “discovery” methods are called in the work-flow that use
an implicit instance identity—the assumption that only one
instance of a task is available in each associated context.
Otherwise, an instance identifier would need to be passed to
the work-flow code. [X and Y may possibly execute on two
different remote computers.] Task C is returned a handle to
each instance of Task R. A handle is just a referencing variable
that the framework library uses locally to define instance
identity. Task C then repeatedly requests that R.1 and R.2
be executed concurrently inside a loop until the work-flow
objective is satisfied. This example also shows a relatively
simple strategy for programming multi-threaded distributed
applications. Initiation of some *“use” method for one or more
instances of different Programming Components can be started
concurrently. A “wait” procedure can be called at some later
appropriate point before accessing the results of that use. Each
use can be managed by the framework via a separate thread.

The focus on Programming Components allows the user
code (or tasks) to be written to run with a high degree of
flexibility because each code can contains a minimum of detail
about the different programming entities or aspects of the
application. Discovery methods allow accurate management
of similar instances of application aspects. Use methods allow
control of a programming entity to be coded without hard-
coding details. Use methods can read the associated meta-



data to provide specific functionality. The functionality can be
easily modified by changing the meta-data during application
development or dynamically during execution. Method argu-
ments can even provide additional dynamic capability if that
is needed. Example use methods are:

1) to start remote executables defined by a context,

2) to execute the code defined by a task that resides in a
server defined by a context,

3) to copy files defined by a file entity,

4) to transfer a data set defined in the memory of a context,
and

5) to check on the status of an event.

The approach is particularly useful for distributed applica-
tions. The framework methods can be used to directly control
remote functionality in a task-parallel programming style. This
will allow very complex applications to be developed using a
manageable modular approach. In addition, the approach sup-
ports efficient execution implementations. Because the various
programming entities are managed via framework methods and
the framework understands the meaning of the meta-data, the
framework can choose the best of competing implementations.
Also, the framework methods can be implemented as filter and
and service tasks. Filter tasks can be used to easily alter the
effects of a user programmed framework method. A message
transfer method might be coded in a task to transfer a large
data set. A possible implementation is for the framework to
provide a filter task that receives the address of the data
and actually does the message passing. If all the data is not
needed, then the filter task can be changed, outside the scope
of the task code, to only send the needed data. Service tasks
would be implemented using multi-threaded programming.
They would allow a great deal of flexible, dynamic control of
framework method functionality. The service task could even
be configured in an interactive mode so that a user could alter
behavior during execution.

The proposed programming model is targeted initially for
implementation via text based languages. However, in the
LAWE project a simple graphical programming system (using
Java Beans) was developed to describe application work-
flow. [8] [13] [14] This prototype demonstrated the potential
for a valuable approach to describing a composite application.
Composite applications are often developed by teams; some
of whom do not program. Historically, flow charts would need
to be developed to describe the application to others. The
combination of a visual work-flow description along with the
meta-data database provides this capability without the extra
work. Moreover, when the application is modified, this first-
level documentation is automatically modified.

C. Aspect-Oriented Programming

One value in defining these Programming Components is to
support the programming style of separation of concerns that
is a primary principle of AOP. Separation of concerns refers to
a programming style where the details of each programming
concern (or aspect) are located together rather than being
scattered throughout a code. This point would be of trivial
importance except that the executions related to these details

may need to be scattered throughout a code for correctness or
performance reasons.

The base benefits described above still require some detail
of various aspects to be located in the work-flow or task code
since framework methods need to be explicitly called. And,
this detail may need to scattered throughout the application
code. Essentially, Programming Components describe and
control side-effect behavior of task codes. In other words,
they control behavior outside the scope of the task code that
needs synchronizing with the execution of the task code. If
one analyzes the primitive requirements of these side-effect
aspects, they boil down to the following:

1) identification of data sets (memory locations) inside the

scope of the task code;

2) knowing the current execution point (or region) in the

task code; and

3) understanding the data dependencies associated with

those data sets and the current execution point.

Generic framework methods can be defined which allow
a programmer to annotate a task code with the above in-
formation rather than coding more specific Programming
Component methods. This approach will provide a dramatic
improvement in task code portability. It should be generally
easy for a programmer to determine the needed generic
methods while developing the task code. The identification
of data sets that might be useful outside the scope of the
task code should be generally straightforward. Eventually,
associated compilers (and even loaders) can be designed to
allow extraneous generic framework methods to be eliminated
from compiled (and executable) code and the programmer
can use a liberal approach when adding generic methods to
define data sets. In other words, when the methods are not
needed they can be easily removed. Data dependency behavior
can be programmed by including lock and unlock methods.
A programmer should know when a data set is being read
or written and needs to be locked. Control point methods
that have labels to identify execution points can be liberally
included similar to the data set identifier methods. Coding
generic functionality will provide more programming freedom
as the developer will not have to decide on the specifics of
side-effects until that code is actually coupled to other codes.

The more specific Programming Component methods can
then be programmed in separate aspect codes, that use the
control point labels and data set identifiers to describe the
desired, correct execution. The framework will provide the
weaver functionality to integrate the different aspects during
execution.

Historically, this type of functionality has been provided by
methods or functions provided by a library that is linked to
the user code. The proposed model allows the functionality to
be implemented with a service model. For example, file 1/0
is often programmed by coding an open statement along with
a set of read or write statements that might be intertwined
throughout a code. All this can be replaced by control points
and the 1/O is located in the aspect code that is implemented
in a server style. This will allow for the I/O programming to
be centralized for more efficient management of that code.
For example, it may be desired for several tasks to write



to the same file. In the proposed model, none of the tasks
need to provide any file control, like open statements. This is
configured via aspect code and implemented via a service task.
Programming flexibility is also enhanced. Rather than write
the data to a file, an alternate composite application may need
to send the data via message passing. The propose approach
allows this to be done easily by altering the separate aspect
code. The scattered generic methods in the user task code
would not need be changed.

D. Behavioral Analysis

a) Potential Use: The above discussion focuses on mak-
ing the programming mechanics of developing and main-
taining applications easier. As computational science evolves,
more composite applications will be built from libraries and
shared element applications. The application developer will
not be intimately familiar with the details of the algorithm for
every task. Even good documentation has never proved com-
pletely satisfactory, because the documentation writer cannot
know the key details that each user wants highlighted. [15]

As algorithm disciplines mature, the description of the
behavior of specific algorithms to solve specific classes of
problems can be standardized. The knowledge and expertise of
the algorithm developer can be conveyed through behavioral
meta-data using standardized vocabularies. The application
developer can then express the application needs via a similar
concept—a contract for requirements of the application. The
programming framework can then analyze the contract and the
meta-data for target tasks to suggest good choices. Clearly, the
sophistication of this analysis will be initially limited as the
scientists in each discipline learn to quantify their expertise.

The use of behavioral meta-data does not have to be limited
to a description of the numerical methods or physical science.
Modern computing environments are frequently composed of
a range of different computers with different architectures. For
various reasons, it is frequently desirable for an application (all
or some parts) to be portable across different architectures.
This can be done using the meta-data for a target platform
which can be used to select an architecture specific version of
a task. In the proposed framework, this architectural type of
behavioral meta-data analysis will be included.

b) Self-Adapting Numerical Software: Associated with
the primary framework development will be work on a system
called Self-Adapting Numerical Software (SANS). This work
will explore additional uses of behavioral meta-data.

The concept of components includes an interface speci-
fication as part of its meta-data. We broaden this concept
to include behavioral meta-data, which describes conditions
for efficient use of a component. Unlike simple calling se-
quences, the behavioral meta-data interface specification can
be expressed in non-programmatic terms; it can for instance
refer to the numerics of the algorithm, or be derived from
the application domain. This behavioral meta-data applies
both to user data, as annotation of their properties, and to
algorithms, as description of their behavior in the presence of
certain properties of data. With meta-data attached to both data
and algorithms, the programming environment can include a

decision-making framework service task, called an Intelligent
Agent, which picks that component out of a collection of
candidates that is best suited to the user data.

While it is conceivable that component authors will supply
such meta-data, asking users to annotate their data in this
manner is unrealistic, and in fact we do not want to burden li-
brary writers with this task either. In Self-Adapting Numerical
Software we let the Intelligent Agent learn from production
runs, extracting information that over time tunes a number of
heuristics.

IV. DISCUSSION
A. Data management flexibility

One feature of object-oriented computing is that data is
treated as a first-class citizen. However, the bundling of
methods (user code) to a data set can be problematic. Data
sometimes needs to be shared by user code written by different
programmers. Replicated data sets also need to be shared
on different contexts and platforms. On the other hand, the
loose tie between data and code in procedural languages can
lead to confusion and errors. The inclusion of a Data Set
and a Task Programming Component was done to provide
the advantages of both approaches. A Task does not need to
own a Data Set. In this discussion, “own” is meant to infer
that the task code requests that memory space be assigned
for the data set, implicitly or explicitly. The inclusion of a
Data Set Programming Component in a Context would make
the framework responsible for memory allocation. The task
would get the address of the data from a framework method.
This allows multiple tasks that need to use the same data set to
be included in the same context with minimum programming
confusion.

B. Reference meta-data

The meta-data for Programming Components can include
references to other Programming Components in the same
and other families. This can be used to assist in application
correctness. A Data Set can be configured for use with only
certain Tasks. And vice versa, a Task can require the existence
in any associated context of a specific Data Set. File, Message,
Data Set Programming Components can all reference the
same data format configuration meta-data. This will insure
compatibility when moving data. If a Data Set and a File
Programming Component reference the same data format, then
a default 1/0 translation can be inferred and the user code does
not include these format details.

C. Runtime efficiency

Just like the design of the code for a particular task
algorithm is better if it is compatible with the architecture
of the computer being used, the algorithm design of the
composite application needs to match the communication
resources of the heterogeneous, distributed environment being
used. This can be a relatively simple procedure of comparing
the data transfer rate requirement of a remote communication



to the capability specified in the meta-data for a Network
Programming Component.

But, within a local area network (LAN) the situation is
not alway straight-forward. When file systems are shared, the
choice of how to move files can be a problematic. For example,
suppose a LAN contains 3 machines that use a shared file
system with machine C being the file server. Suppose the user
code on A writes a file and that file needs to be transferred
to machine B so it can be read by another code. Since the
file systems are shared, both copies of the file will reside on
machine C—just in separate directories. Therefore, a local file
copy (or a local file link) on machine C is the most efficient
solution. However, many users will program the file transfer
as an explicit remote copy which results in three network
transfers—from A to B to C and back to A. Alternately, the
programmer would need to program multiple solutions and the
correct solution chosen depending on whether the file systems
are shared or not.

This is one example where the proposed programming
model will provide a benefit. A Site Programming Component
can be defined that contains meta-data that describes the file
system and computers within a LAN. The programmer will
associate each Task Programming Component with a Con-
text Programming Component which executes on a Platform
Programming Component which is associated with the Site
Programming Component. A File Programming Component
can be associated with a Task or directly with a Platform.
The end result is that the framework has enough information
to take a generic file copy request from the programmer and
generate the most efficient result.

The meta-data for the Platform and Site Programming
Components can be generated by the system administrator for
the LAN and shared by all applications. The application user
would only have to provide the association of Context or File
to the Platform. Even this may not be necessary if a virtual
platform (which specifies requirements for a computer rather
than a specific computer name or pool of computers) is defined
for the application and the framework automatically matches
it to a Platform defined to represent a physical computer. The
generic file copy method would be implemented as part of
the framework. The result would be an efficient programming
environment where the user can focus on the correctness of the
algorithms and not the details of every distributed computing
aspect.

This example shows that the benefits of separation of
concerns are not limited to just organization of the application.
Appropriate separation can make it easy and natural for
different people to provide information for the composite
application.

D. Resource management

One of the headaches of distributed computing is the linking
of the computational needs of each context to a computing
resource. Some users desire to request a specific computer,
while others would like some system to select a machine by
matching a specific requirement. The proposed model allows
the Platform Programming Component to be configurable with
one of several styles:

1) specification of a specific computer,
2) specification of a pool of computers, or
3) request the use of a resource scheduling system.

In addition, the linkages can be defined internally and
externally to the user code. Also, the linkages can be statically
or dynamically programmed.

This gives the programmer the ability to tightly integrate
computer selection into a code or not. The meta-data for the
Task or Context Programming Components can be used to
define any specific computing requirements and the framework
used to complete the resource selection for an application.

For example, a task that has been coded using a data-
parallel, message passing system can require a computer with
an appropriate architecture. The meta-data for a Task or an
associated Data Set could include size information that could
be used to determine which computing resource to select. Two
tasks that need to pass data via message passing (or even
files) could have a network requirement in their meta-data that
could specify the locality (in terms of network performance)
of appropriate computing resources. Clearly, the use of meta-
data organized around appropriate programming entities will
result in a programming environment where cleaner and more
understandable task codes can be developed.

V. CONCLUSION
A. Summary

In this paper, it has been pointed out that a major problem
with the development of many scientific applications is the
need for a programming environment that supports devel-
opment of code in an efficient manner. In particular, this
means that the various aspects of the application are not so
intertwined that the application becomes difficult to modify
and otherwise manage.

A programming model that emphasizes separation of con-
cerns has been proposed. The meta-data for the proposed
Programming Components will be the nucleus of the approach
to separate the details of the different coding aspects that make
up an application. The Programming Component framework
methods will support a variety of programming styles that
allow complex composite applications to be built. This will
include an approach where the task code can be developed
with a minimal set of generic methods. This will allow very
portable task code to be written.

The programming model is completed with the inclusion
of behavioral meta-data and a system to use the analysis of
behavioral meta-data. This functionality will support the use
of tasks and data with which the programmer is not intimately
familiar.

B. Implementation Plans

The planned framework will be build using standards being
generated by two scientific community forums. The Common
Component Architecture Forum is developing standards for
the packaging of user code as components and frameworks
that can efficiently execute those components. [16] The Global
Grid Forum is developing standards to support distributed
computing in heterogeneous environments that can include



the use of multiple local area networks that are independently
managed [17]. This means that security is an integral part of
the design.

[1]
[2]

[3]

[4]

[5]

[6]

[’

(8]

[0

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

REFERENCES

F. Brooks, “No silver bullet: Essence and accidents of software engi-
neering,” Computer, p. 12, April 1994.

T. Sterling, P. Messina, and J. Pool, “Findings of the second pasadena
workshop on system software and tools for high performance computing
environments,” Center of Excellence in Space Data and Information
Sciences, Goddard Space Flight Center, Greenbelt, MD, Tech. Rep.
Report TR-95-162, 1995.

A. Salas and J. Townsend, “Framework requirements for mdo appli-
cation development,” in 7th AIAA/JUSAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, S. Louis, MO, no. AIAA
Paper 98-4740, September 1998.

R. Weston, J. Townsend, T. Eidson, and R. Gates, “A dis-
tributed computing environment for multidisciplinary design,” in 5th
AIAA/NASA/USAF/ISSMO Symposium on Multiple Disciplinary Analysis
and Optimization, Panama City, FI, September 1994.

G. Kiczales and e. a. J. Lamping, “Aspect-oriented programming,” in
Proceedings of the European Conference on Object-Oriented Program-
ming (OOPSLA), Finland. Springer-Verlag, June 1997.

R. Filman and D. Friedman, “Aspect-oriented programming is quan-
tification and obliviousness,” in Workshop on Advanced Separation of
Concerns, OOPSLA 2000, Minneapolis, October 2000.

T. Eidson and G. Erlebacher, “Implementation of a fully-balanced pe-
riodic tridiagonal solver on a parallel distributed memory architecture,”
Concurrancy: Practice and Experience, vol. 7, no. 4, June 1995.

T. Eidson, “A programming environment for the development of large
scientific systems on a distributed computing network,” NASA Langley
Research Center, Hampton, VA, Tech. Rep. NASA SBIR 95 Phase 2
Final Report, Contract No. NAS1-97021 LaRC, March 1999.

——, “Implementation of wingbody/rlv application in lawe,” NASA
Langley Research Center, Hampton, VA, Tech. Rep. Objective 2 Final
Report, NASA LaRC PO: L10988, September 2000.

J. Townsend, T. Eidson, and R. Weston, “A programming environment
for distributed complex computing - an overview of the framework for
interdisciplinary design optimization (fido) project,” NASA Langley Re-
search Center, Hampton, VA, Tech. Rep. NASA TM 109058, December
1993.

C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley, 1998.

T. Eidson, “A component-based programming model for composite,
distributed applications,” ICASE, NASA Langley Research Center,
Hampton, VA, Tech. Rep. ICASE Report No. 2001-15, June 2001.

R. Englander, Developing Java Beans. O’Reilly and Associates, Inc,
1997.

J. Browne, K. M. S. Hyder, J. Dongarra, and P. Newton, “Visual
programming and debugging for parallel computing,” IEEE Parallel and
Distributed Technology, vol. 3, no. 1, 1995.

C. Cicalese and S. Rotenstreich, “Behavioral specification of distributed
software,” Computer, p. 46, July 1999.

CCA, “Common Component Architecture Forum webpage,” in
http: /immw.cca-forum.org, 2003.

GGF, “Global Grid Forum webpage,” in http://mww.gridforum.org, 2003.



