
EXPERIMENTS WITH STRASSEN’S ALGORITHM: FROM SEQUENTIAL
TO PARALLEL

Fengguang Song, Jack Dongarra, and Shirley Moore
Computer Science Department

University of Tennessee
Knoxville, Tennessee 37996, USA

email:{song, dongarra, shirley}@cs.utk.edu

ABSTRACT
This paper studies Strassen’s matrix multiplication algo-
rithm by implementing it in a variety of methods: sequen-
tial, workflow, and in parallel. All the methods show bet-
ter performance than the well-known scientific libraries
for medium to large size matrices. The sequential recur-
sive program is implemented and compared with ATLAS’s
DGEMM subroutine. A workflow program in the Net-
Solve system and two parallel programs based on MPI and
ScaLAPACK are also implemented. By analyzing the time
complexity and memory requirement of each method, we
provide insight into how to utilize Strassen’s Algorithm to
speedup matrix multiplication based on existing high per-
formance tools or libraries.

KEY WORDS
Strassen’s Algorithm, Matrix Multiplication, Parallel Com-
puting.

1 Introduction

Matrix multiplication is one of the most basic operations
of scientific computing and is implemented as a key sub-
routine in the Level 3 BLAS [3]. Conventional algo-
rithm to perform matrix multiplication is of time complex-
ity O(n3) and has been investigated extensively. However,
an alternative method of Strassen’s algorithm is much less
investigated. The complexity of Strassen’s algorithm is
O(n2.807), which means it will run faster than the conven-
tional algorithm for sufficiently large matrices. This inter-
esting feature motivated us to perform various experiments
on it.

A sequential and three parallel programs have been
attempted to implement Strassen’s algorithm. We write the
sequential program by using the well-known Winograd’s
method [8, 10]. The sequential program stops its recursion
on a certain level where it invokes the subroutineDGEMM
provided by ATLAS [6]. Since the design of the program is
straightforward, we only introduce its performance and in-
stability issues, as well as how they vary with the recursion
level. The three parallel programs include one workflow
program and two MPI programs. The workflow program is
implemented in the client-end on the NetSolve system [7].
It has a workflow controller to check and start the tasks in

a task graph (Figure 4). All tasks are sent to the NetSolve
servers to compute. When the dependent tasks are finished,
the controller launches a new task immediately. The in-
tensive computation is actually performed on the NetSolve
servers, thus the client machine is available to run other
tasks. Next we adopt two different approaches to design
the parallel programs running on distributed memory sys-
tems. The first program uses a task-parallel approach, and
the second one uses a data-parallel approach which uses the
ScaLAPACK library to compute the submatrix multiplica-
tions [11, 12].

In the remainder of this paper we first present the
related work. Next we briefly recall Strassen’s algorithm
and compare the sequential program’s performance to AT-
LAS’s DGEMM subroutine in Section 3. Sections 4, 5, 6
describe the NetSolve workflow, the task-parallel, and the
data-parallel approaches, respectively. The experimental
result and analysis are provided in Section 7. Finally we
offer conclusions and future work in Section 8.

2 Related Work

Huss-Lederman developed an efficient and portable serial
implementation of Strassen’s algorithm called DGEFMM
[8]. DGEFMM is designed to replace DGEMM and obtain
better performance for all matrix sizes while minimizing
the temporary storage. DGEMMS in the IBM ESSL li-
brary implements Strassen’s algorithm but only performs
the multiplication part of DGEMM,C = op(A) × op(B)
[13].

There are various parallel methods to implement
Strassen’s algorithm on distributed memory architectures.
The methods typically belong to three classes. The first
class is to use the conventional algorithm at the top level
(across processors) and Strassen’s algorithm at the bottom
level (within a processor). A commonly used one is Fox’s
Broadcast-Multiply- Roll (BMR) method [2]. Ohtaki [14]
uses a similar method but is more focused on a distribu-
tion scheme particularly for heterogeneous clusters. The
second class is to use Strassen’s algorithm at both the top
and bottom levels. Chou [4] decomposes the matrix A into
2× 2 blocks of submatrices, then further decomposes each
submatrix into four2 × 2 blocks (i.e.,4 × 4 blocks). This
way he is able to identify 49 multiplications and uses 7 or



Table 1. Strassen’s Algorithm

Phase 1 T1 = A11 + A22 T6 = B11 + B22

T2 = A21 + A22 T7 = B12 − B22

T3 = A11 + A12 T8 = B21 − B11

T4 = A21 − A11 T9 = B11 + B12

T5 = A12 − A22 T10 = B21 + B22

Phase 2 Q1 = T1 × T6 Q5 = T3 × B22

Q2 = T2 × B11 Q6 = T4 × T9

Q3 = A11 × T7 Q7 = T5 × T10

Q4 = A22 × T8

Phase 3 T1 = Q1 + Q4 T3 = Q3 + Q1

T2 = Q5 − Q7 T4 = Q2 − Q6

Phase 4 C11 = T1 − T2 C12 = Q3 + Q5

C21 = Q2 + Q4 C22 = T3 − T4

49 processors to perform multiplications concurrently. Our
task-parallel program uses a similar idea and proves that
this simple approach can outperform ScaLAPACK by up
to 20%. The last class is using Strassen’s algorithm at the
top level and the conventional one at the bottom level. As
the matrix size increases, the cost of the extra matrix addi-
tions imposed by Strassen’s algorithm becomes less com-
pared to the saved matrix multiplication cost. Therefore
Strassen’s algorithm is better used across processors on the
top level. Luo [5] proposes theStrassen-BMR method with
Strassen’s at the top and the BMR method at the bottom.
Grayson [9] uses Strassen’s algorithm at the top level and
derives a new parallel algorithm specifically for a square
mesh of nodes. Desprez [12] simultaneously exploits data
and task parallelism employing Strassen’s algorithm at the
top and ScaLAPACK’sPDGEMM at the bottom. Our data-
parallel approach is also based upon ScaLAPACK, but is
more generic and does not require that matrices A and B be
in two disjoint sets of compute nodes.

3 Strassen’s Algorithm

In 1969, Strassen introduced an algorithm to compute ma-
trix multiplications [1]. In contrast to the conventional al-
gorithm which involves 8 multiplications and 4 additions,
Strassen’s algorithm uses a clever scheme that involves 7
multiplications and 18 additions. The algorithm describes
how to perform a single level recursion on2 × 2 blocks:

C =

(

C11 C12

C21 C22

)

=

(

A11 A12

A21 A22

) (

B11 B12

B21 B22

)

We can continue to apply Strassen’s algorithm recursively
to achieve the time complexity ofO(nlog7) = O(n2.807).
The single level recursion of the algorithm is illustrated in
Table 1, as in [12].

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0
 100

 200
 300

 400
 500

 600
 700

 800
 900

 1000  0  100  200  300  400  500  600  700  800  900  1000

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

Ratio of Time(Strassen/Conventional)        3
       2
     1.5
       1
     0.9

Cutoff Point

Matrix Order

Ratio of Time(Strassen/Conventional)

Figure 1. Serial implementation of Strassen’s Algorithm
compared to ATLAS.

Unless the matrix has a dimension of2k you cannot
apply Strassen’s algorithm directly. A method calleddy-
namic peeling is able to solve this problem effectively [10].
Dynamic peeling makes matrix dimensions even by strip-
ping off an extra row or column as needed, and putting their
contributions back to the final result later.

Strassen’s algorithm requires additional temporary
storage and complicates cache blocking; therefore in prac-
tice it is slower than the conventional algorithm for small-
size matrices. From Table 1, ten temporary variables are
needed in phase 1, seven in phase 2, and four in phase 3.
Jacobson [8] suggests an optimized method of memory us-
age which requires only three temporaries.

Strassen’s algorithm suffers from an instability prob-
lem due to cancellation errors in the algorithm. Stopping
the recursion early and performing the bottom-level matrix
multiplication with the conventional method can eliminate
the problem. We use ATLAS’sDGEMM as the fundamen-
tal subroutine. Figure 1 and Figure 2 depict the speedup
and relative error, respectively, of the serial implementation
of the algorithm with respect to matrix dimension and cut-
off point. The experiments were performed on a Pentium4
3.2GHz desktop. In Figure 1, we observe that Strassen’s al-
gorithm is faster than ATLAS’sDGEMM around the bottom
right area. It is about 90% of the execution time ofDGEMM.
Also as shown in Figure 2, as the recursion level increases,
the relative error becomes more and more severe.

4 Workflow Program Using NetSolve

NetSolve is a network enabled solver system [7]. It has a
client/agent/server design. The client first sends a request
to the agent. The agent then discovers appropriate servers
to service the request dynamically. After that, the client
communicates with the provided servers directly to send
the input and receive the output. An advantage of using



 0

 5e-16

 1e-15

 1.5e-15

 2e-15

 2.5e-15

 3e-15

 0
 100

 200
 300

 400
 500

 600
 700

 800
 900

 1000  0  100  200  300  400  500  600  700  800  900  1000

 0
 5e-16
 1e-15

 1.5e-15
 2e-15

 2.5e-15
 3e-15

Relative Error  2.5e-15
   2e-15
 1.5e-15
   1e-15
   5e-16

Cutoff Point

Matrix Order

Relative Error

Figure 2. Relative error of Strassen’s Algorithm.

NetSolve is that a user does not have to worry about the
software maintenance issue and needs only a few resources
on the client-end. Figure 3 shows the architecture of Net-
Solve.

It is straightforward to represent Strassen’s algorithm
in a task graph. A task graph is a directed graph whose
edges represent dependence relationship and nodes repre-
sent tasks (either sequential or parallel programs). The
node located at the arc tail should be executed before the
node at the arc head. Figure 4 displays the corresponding
task graph of one-level recursion of Strassen’s algorithm.
Please refer to Table 1 for the task notations.

4.1 Program Design

We look at the task graph in Figure 4 as a workflow di-
agram where a branch can be executed independently of
other branches. To minimize the execution time, each node
may start its computation whenever it is possible. We wrote
a C program to implement the essentially data-driven com-
putation. There are two types of operations in Strassen’s
algorithm: T1-T10 and C11-C22 are matrix additions, Q1-
Q7 are matrix multiplications for which services are pro-
vided by NetSolve servers.

The client program calls a nonblocking function
netslnb to invoke remote services on the servers. It uses
a controller to traverse all of the nodes in the graph and
manages to keep the data dependency. A set of flags in-
dicating whether a node is started or completed help the
controller to make appropriate decisions. Whenever the in-
put to a node is available, the controller starts the node by
sending a request to the agent to request a matrix addition
or multiplication. The client is also able to support multi-
level recursion of Strassen’s algorithm.

The controller is essentially awhile loop as shown
in Figure 5. The functiontest run xxx checks whether
a node’s input is available and launches the job whenever

Figure 3. NetSolve architecture.

Figure 4. Task graph of Strassen’s Algorithm.

possible.

4.2 Memory Usage

If we use one-level recursion of Strassen’s algorithm in the
client program, matrices A, B and C will use3N2 elements
of memory. There are also intermediate results required to
be stored in temporary locations. Phase one needs ten tem-
porary variables (for T1 to T10), phase two seven tempo-
rary variables (for Q1 to Q7), and phase three needs four
variables (for C11 to C22). The total amount of storage is
3N2 + 21(N

2
)2 = 8.25N2. The server side requires less

memory than the client side, namely3(N
2

)2. In addition,
if two-level recursion of Strassen’s algorithm is used, the
client program uses3N2 + 21(N

4
)2 = 4.3125N2 memory

space and the server program uses3(N
4

)2 memory space.

5 Task-Parallel Approach Using MPI

We use a straightforward method to parallelize Strassen’s
algorithm. Based on the algorithm, there exist seven ma-
trix multiplications (i.e., Q1-Q7). If we employ seven pro-
cesses to compute the multiplications, the program design



void do_schedule() {
/* Kick off Phase 1 nodes all at once */
start_phase1_jobs(global_data);

while(!is_alljobs_done(flags)) {
/* Phase 2 nodes */
test_run_Q1(global_data, flags);
test_run_Q2(global_data, flags);
test_run_Q3(global_data, flags);
test_run_Q4(global_data, flags);
test_run_Q5(global_data, flags);
test_run_Q6(global_data, flags);
test_run_Q7(global_data, flags);
/* Phase 3 nodes */
test_run_Phase3_T1(global_data, flags);
test_run_Phase3_T2(global_data, flags);
test_run_Phase3_T3(global_data, flags);
test_run_Phase3_T4(global_data, flags);
/* Phase 4 nodes */
test_run_Phase4_C11(global_data, flags);
test_run_Phase4_C12(global_data, flags);
test_run_Phase4_C21(global_data, flags);
test_run_Phase4_C22(global_data, flags);
sleep(1);

}
}

Figure 5. Workflow controller in the NetSolve client.

becomes very simple. The basic idea is that we divide the
task graph (Figure 4) into seven parts and each part is han-
dled by a process. Figure 6 depicts the task partitioning
across the seven processes. Nodes with the same color be-
long to a single process. Please note that positions of nodes
in Figure 6 are identical to those in Figure 4. Since Figure
6 directly reflects our program design, it is straightforward
to write an MPI program based on the graph. For instance,
process P0 performs computations of T1, T6, Q1 and C11
which correspond to the red nodes on the left.

5.1 Memory Usage

As shown in Figure 6, processes 0, 5 and 6 store one more
intermediate result than the other processes and thus need
more memory. We only consider the memory cost required
by processes 0, 5 and 6. Each of them needs1

2
N2 space to

store two blocks of A,1
2
N2 to store two blocks of B, and

1

4
N2 to store one block of C. Additionally, six temporary

variables for intermediate results require6(N
2

)2 elements
of memory. In total, the memory requirement is equal to
2.75N2.

Figure 6. Using seven MPI processes to implement
Strassen’s Algorithm.

6 Data-Parallel Approach Using ScaLA-
PACK

As described in Section 2, there are typically three classes
of methods to parallel Strassen’s algorithm. In this section,
we describe a method belonging to the third class, where
Strassen’s algorithm is used at the higher level and the par-
allel ScaLAPACKPDGEMM is used at the lower level. Dif-
ferent from the task-parallel program introduced in Section
5, this is a data-parallel program that performs the same
operations in parallel on different subsets of the data.

Because our program calls the ScaLAPACK subrou-
tines, we must adopt the same data distribution scheme as
that of ScaLAPACK, that is, two-dimensional block-cyclic
distribution.

6.1 Program Design

The processor grid is squarep×p, wherep is of dimension
2i. Square matrices of A, B, C are distributed across thep2

processors located from the top left [0,0] to the bottom right
[p-1, p-1]. Each process has a local matrix that consists
of elements from different blocks of a matrix in the 2-D
block-cyclic way. Since no process owns the whole matrix,
matrix multiplications of Q1-Q7 have to be performed in a
distributed way. This is done by calling PBLAS’sPDGEMM.
Interestingly, matrix additions and subtractions in phase1
and 3 can be computed without any communication at all
(i.e., T1-T10 and C11-C22). This is one advantage of using
the 2-D block-cyclic scheme for Strassen’s algorithm.

In the program, each process executes the T, Q, and
C operations defined in Table 1 sequentially. All processes
have the identical source code but operate on different sub-
matrices. Matrix addition operations are local to each pro-
cess, and matrix multiplications are performed across mul-
tiple processes by callingPDGEMM. The flow chart diagram
in Figure 7 describes how the program works.

It is easy to port the program to various platforms
since it is built on a standard library. Developers don’t have



Figure 7. Flow chart diagram of the data-parallel method
using ScaLAPACK.

to worry about the detailed parallelism implementation.

6.2 Time Cost Analysis

Desprez [12] introduced a theoretical model to determine
the performance ofPDGEMM. The model is given as fol-
lows:

Tpdgemm =
2N3

p2
tm + N2(2g) +

2N

N/p
(2L),

wheretm is the time per floating operation,g is a func-
tion for thegap andL is a function for thelatency. The
first item represents the computation time, and the last two
items represent the communication time.

Our method computes seven sub-matrix multiplica-
tions in the lower level. Therefore its time cost is equal
to:

Tstrassen = 7(
2(N/2)3

p2
tm + (N/2)2(2g) +

N

N/2p
(2L))

=
7

4

N3

p2
tm +

7

2
N2g + 28pL

Since there is no communication at all for matrix additions,
and their computation time is small compared to matrix
multiplications’, we omit the matrix addition time in the
equation forTstrassen.

The above model predicts that we could achieve an
improved performance for matrices of sufficiently large
size if the communication time is relatively small. This can
be easily seen by comparing the equation ofTpdgemm to the
equation ofTstrassen. The experimental result in Figure 10
(described in Section 7.3) validates the analytical model.

6.3 Memory Usage

Because we compute the matrix product on a square pro-
cessor grid ofp×p and use the scheme of 2-D block cyclic
data distribution, all the temporary variables are of sizeN

2p
.

Each process uses21( N
2p

)2 space. Considering the space to
store matrices A, B, C, the total amount of memory space
is 3(N

p
)2 + 21( N

2p
)2 = 8.25(N

p
)2.

7 Experimental Results and Analysis

All the experiments were performed on a local Linux clus-
ter. The cluster consists of 32 nodes, each of which has dual
PentiumIV Xeon 2.4GHz processors and 2GB RAM. In
this section, we will present the experimental results for the
workflow and parallel programs that implement Strassen’s
algorithm.

7.1 Result for the Workflow Approach

We provide NetSolve servers with two services:matadd
andmatmul, to add and multiply matrices, respectively. A
NetSolve agent and three NetSolve servers are launched on
four compute nodes. The client program is running on the
fifth machine. The experiment multiplies matrices of size
512, 1024, 2048, and 4196 respectively. Since we are con-
sidering in-core computations and the memory capacity is
2GB, the biggest matrix size allowed is around 4000. We
consider the client program to be sequential and compare
it with ATLAS DGEMM. Figure 8 shows the total execution
time of the workflow program and its breakdown into up-
load overhead, download overhead, and computation time.
The upload overhead refers to the communication time for
the client to send requests to the agent and to send input to
servers. The download overhead refers to the communica-
tion time to receive result from servers. The computation
time is the total execution time minus the communication
time (i.e., upload overhead+ download overhead).

We observe that the performance of Strassen’s algo-
rithm is not as good as the ATLAS program. The rea-
son why it is slower is because it takes significant time to
transfer data between the client and servers. For instance,
the communication time occupies around 60% of the total
time when n = 512, 1024, and 90% when n = 2048, 4096.
However, when the matrix dimension is large enough (e.g.
n=4096), Strassen’s method becomes faster than ATLAS.

The client often keeps most of the CPU resource free
even though it is doing intensiveO(n3) computations. This
justifies our original intention to attempt this method. If the
time taken to send/receive data to NetSolve servers (i.e.,
O(n2)) is less than the time taken to compute them locally
(i.e., O(n3)), we are able to achieve a better performance
thanDGEMM by using the workflow method. A further in-
vestigation shows that the agent overhead, which lies be-
tween 1 and 2 seconds is costly. An improved NetSolve
agent could make the workflow prototype run much faster.



Figure 8. The workflow approach on a NetSolve client.
Whenn = 4096, the S-method outperforms ATLAS. The
computation cost on the client is always small.

7.2 Result for the Task-Parallel Approach
Using MPI

We use seven MPI processes to compute the matrix mul-
tiplication. We compare it with ScaLAPACK’sPDGEMM
which adopts two different processor grids of1 × 7 and
2×4. The2×4 grid uses the 2-D block-cyclic scheme and
is more load-balanced than1× 7. We conduct experiments
on matrices of size 512, 1024, 2048, and 4196. For each
matrix, three programs (Strassen’s method, ScaLAPACK
with seven processes, ScaLAPACK with eight processes)
are executed. It is obvious to see in Figure 9 that the per-
formance of Strassen’s method is always better than that of
ScaLAPACK. In particular, the S-method provides a per-
formance even close to the ScaLAPACK2 × 4 program.
Note that the2 × 4 program uses one more processor than
the S-method. Although the idea is simple, our experimen-
tal result shows that the task-parallel S-method is more ef-
ficient than ScaLAPACK. We plan to extend the approach
to support running more than seven processors.

7.3 Result for the Data-Parallel Approach
Using ScaLAPACK

A number of experiments were performed to compute the
matrix multiplications for matrices of size n = 512, 1024,
2048, 4096, 9182. We used a processor grid of2× 2 to run
the experiments. The performance of ScaLAPACK is also
presented in comparison with the S-method. In Figure 10,
ScaLAPACK performs 10% better than the Strassen’s pro-
gram when n = 512, 1024, 2048. When n = 4096 they are

Figure 9. The task-parallel approach using MPI. It is com-
pared to ScaLAPACK’sPDGEMM with seven or eight pro-
cesses. The S-method is always faster thanPDGEMM with
seven processes and close to that with eight processes.

the same, and when n = 8192 Strassen’s method shows a
better performance than ScaLAPACK. With the increment
of the matrix dimension (more intensive computation), the
S-method performs better than ScaLAPACK by saving one
submatrix multiplication. This phenomenon also validates
our theoretical model described in Section 6.2. Further-
more, based on the model, we expect that a faster network
would improve the S-method greatly for a smaller matrix
size rather than the current n = 4096.

8 Conclusions and Future Work

We have attempted three approaches to implement
Strassen’s algorithm. Although Strassen’s algorithm has
the problem of instability, stopping the recursion early can
solve it easily. The workflow approach utilizes NetSolve
servers to do the matrix multiplication by sending tasks to
servers. When the matrix size n = 4096, the client does
the computation faster than ATLAS while using a very
small portion of its CPU resource. In addition, two paral-
lel implementations of Strassen’s algorithm running on dis-
tributed memory systems are presented. The first one is a
task-parallel application where each process takes care ofa
different task. It always provides a better performance than
ScaLAPACK using1×7 processors and is even close to that
of ScaLAPACK with one more processor. The second par-
allel implementation is a data-parallel application that calls
PDGEMM at the bottom recursion level of Strassen’s algo-
rithm. A theoretical performance model is also provided
and validated. It predicts that this approach will perform
better than ScaLAPACK when n is sufficiently large. This
method is scalable and easy to port to other platforms be-



Figure 10. The data-parallel approach using ScaLAPACK.
The S-method becomes better than ScaLAPACK after n =
4096.

cause the low-level subroutine ofPDGEMM is from a stan-
dard portable library. All of the methods we tried have
shown an improved performance by using Strassen’s al-
gorithm. We hope to use them on different types of plat-
forms accordingly: either on a desktop computer or in a
distributed-memory system. Hence it is worthwhile to put
more effort into this method so that the basic operation of
matrix multiplication could be improved further.

Our experience suggests that it is not trivial to make
Strassen’s algorithm perform better on medium-size matri-
ces, not to mention small-size ones. But there is still much
we can do to continue improving the programs’ perfor-
mance. For the NetSolve method, doing matrix additions
locally rather than remotely would reduce the communica-
tion cost greatly. With an extension to the MPI method, we
could use more than seven processors to do the computa-
tion. A mixed task- and data-parallel approach would be
able to give the ScaLAPACK method more parallelism and
improve the program performance further.

References

[1] Gaussian Elimination Is Not Optimal, V. Strassen. Nu-
mer. Math., 13:354-356, 1969.

[2] Matrix Algorithms on the Hypercube I: Matrix Mul-
tiplication, G. C. Fox, A. I. Hey and S. Otto. Parallel
Computing 4:17-31, 1987.

[3] A Set of Level 3 Basic Linear Algebra Subprograms,
J. J. Dongarra, J. Du Croz, S. Hammarling and I. Duff.
ACM Trans. Math. Software, 16:1-17, 1990.

[4] Parallelizing Strassen’s Method for Matrix Multiplica-
tion on Distributed-Memory MIMD Architectures, C.
Chou, Y. Deng, G. Li and Y. Wang. Computers for
Mathematics with Applications, 30(2):49, 1995.

[5] A Scalable Parallel Strassen’s Matrix Multiplication
Algorithm for Distributed-Memory Computers, Q. Luo
and J. Drake. Proceedings of the 1995 ACM Sym-
posium on Applied Computing, 221-226, Nashville,
1995.

[6] Automatically Tuned Linear Algebra Software (AT-
LAS), http://www.netlib.org/atlas.

[7] NetSolve/GridSolve, http://icl.cs.utk.edu/netsolve.

[8] Implementation of Strassen’s Algorithm for Matrix
Multiplication, S. Huss-Lederman and E. Jacobson.
Proceedings of the 1996 ACM/IEEE conference on Su-
percomputing, Pittsburgh, 1996.

[9] A High Performance Parallel Strassen Implementation,
B. Grayson and R. de Geijn. Parallel Processing Let-
ters, Vol 6, No. 1, 3-12, 1996.

[10] Efficient Implementation of Strassen’s Algorithm for
Matrix Multiplication, M. Spence and V. Kanodia.
Technical Report, Rice University.

[11] ScaLAPACK Users’ Guide, L.S. Blackford, J. Choi,
A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J.
Dongarra, S. Hammarling, G. Henry, A. Petitet, K.
Stanley, D. Walker and R.C. Whaley. ScaLAPACK
User’s Guide, SIAM, Philadelphia, 1997.

[12] Mixed Parallel Implementation of the Top Level Step
of Strassen and Winograd Matrix Multiplication Algo-
rithms, F. Desprez and F. Suter. Proceedings of the 15th
International Parallel and Distributed Processing Sym-
posium (IPDPS’01), San Francisco, 2001.

[13] IBM Engineering and Scientific Subroutine Library
Version 3 Release 3 Guide and Reference. Document
Number SA22-7272-04, IBM.

[14] Parallel Implementation of Strassen’s Matrix Mul-
tiplication Algorithm for Heterogeneous Clusters, Y.
Ohtaki, D. Takahashi, T. Boku and M. Sato. Proceed-
ings of the 18th International Parallel and Distributed
Processing Symposium (IPDPS’04), Santa Fe, 2004.


